Những câu hỏi liên quan
LC
Xem chi tiết
KN
17 tháng 10 2020 lúc 13:22

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

Bình luận (0)
 Khách vãng lai đã xóa
KN
17 tháng 10 2020 lúc 18:48

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
8 tháng 1 2018 lúc 20:37

1.trừ từng vế 2 pt có \(x+y-xy=1\)

\(< =>\left(x-1\right)\left(y-1\right)=0\)......

2.Cộng từng vế 2 pt có

\(\sqrt{x}+\sqrt{y}+\sqrt{x+1}+\sqrt{y+1}=2\)

mà đk là x;y\(\ge0\)nên vt\(\ge2\)

dấu = xr <=>x=y=0

Bình luận (0)
PA
Xem chi tiết
AN
7 tháng 1 2017 lúc 9:15

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

Bình luận (0)
AN
7 tháng 1 2017 lúc 9:29

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

Bình luận (0)
PA
7 tháng 1 2017 lúc 10:34

thank nha 

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 7 2017 lúc 20:03

Đây là đề thi TS 10 chuyến toán  quốc học 2013-2014 
:D Rất hạnh phúc vì bạn chép sai đề .

Bình luận (0)
H24
3 tháng 7 2017 lúc 10:58

De chuan

Bình luận (0)
LL
Xem chi tiết
LA
3 tháng 3 2019 lúc 20:44

\(\hept{\begin{cases}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-\sqrt{2}y=\sqrt{2}\\5x+\sqrt{2}y=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{6}+5\right)x=\sqrt{2}+\sqrt{3}\\\sqrt{3}x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5}\\\frac{\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}+5}-1=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5}\\y=\frac{-2}{\sqrt{6}+5}\end{cases}}\)

Vậy: Hệ có nghiệm duy nhất thỏa mãn : \(\left(x;y\right)=\left(\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5};\frac{-2}{\sqrt{6}+5}\right)\)

=.= hk tốt!!

Bình luận (0)
VP
Xem chi tiết
H24
26 tháng 7 2019 lúc 14:33

\(ĐKXĐ:x;y\ge2\)

Trừ 2 vế của hệ cho nhau ta được

\(\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{y-2}-\sqrt{x-2}\right)=0\)

\(\Leftrightarrow\frac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\frac{y-2-x+2}{\sqrt{y-2}+\sqrt{x-2}}=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}-\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)(1)

Vì \(\sqrt{x+1}+\sqrt{y+1}>\sqrt{x-2}+\sqrt{y-2}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}< \frac{1}{\sqrt{x-2}+\sqrt{y-2}}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}< 0\)(2)

Từ (1) và (2) => x - y = 0

                    <=> x = y

Thay vào 1 trong 2 pt ban đầu có

\(\sqrt{x+1}+\sqrt{x-2}=3\)

\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(x-2\right)}+x-2=9\)

\(\Leftrightarrow\sqrt{x^2-x-2}=5-x\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\x^2-x-2=25-10x+x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\9x=27\end{cases}}\)

\(\Leftrightarrow x=3\left(tmĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

Bình luận (0)
TH
Xem chi tiết
TL
23 tháng 8 2020 lúc 20:46

\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+3x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(x^2+3x+5>0\right)}\)

Tìm được (x;y)=(1;0);(2;2)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
TT
4 tháng 3 2020 lúc 15:27

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

Bình luận (0)
 Khách vãng lai đã xóa
BH
4 tháng 3 2020 lúc 20:22

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
BH
4 tháng 3 2020 lúc 20:28

\(d,\hept{\begin{cases}\sqrt{6x}-\sqrt{4y}=\sqrt{2}\\\sqrt{6x}+\sqrt{9y}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5\sqrt{y}=3-\sqrt{2}\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{11-6\sqrt{2}}{25}\\x=\frac{9+6\sqrt{2}}{25}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
OK
Xem chi tiết