Những câu hỏi liên quan
HD
Xem chi tiết
TD
28 tháng 4 2020 lúc 7:33

do vai trò a,b là như nhau nên không giảm tính tổng quát, giả sử \(a\le b\)

Nếu \(a\ge3\)thì \(b\ge a\ge3\)nên

\(\frac{ab+1}{a+b}\ge\frac{3b+1}{a+b}\ge\frac{3b+1}{2b}=\frac{3}{2}+\frac{1}{2b}>\frac{3}{2}\)( ko thỏa mãn điều kiện )

do đó a < 3 \(\Rightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)

+) nếu a = 1 thì \(P=\frac{a^3b^3+1}{a^3+b^3}=\frac{b^3+1}{b^3+1}=1\)

+) nếu a = 2 thì từ điều kiện ta có : \(\frac{2b+1}{2+b}< \frac{3}{2}\Rightarrow4b+2< 6+3b\Rightarrow b< 4\Rightarrow b\in\left\{1;2;3\right\}\)

b = 1 thì P = 1

b = 2 thì P = \(\frac{65}{16}\)

b = 3 thì P = \(\frac{217}{35}\)

Từ các giá trị trên của P ta thấy giá trị lớn nhất của P là \(\frac{217}{35}\) khi a = 2 ; b = 3 hoặc a = 3 ; b = 2

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
Xem chi tiết
DD
4 tháng 10 2020 lúc 19:52

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

Bình luận (0)
 Khách vãng lai đã xóa
KN
4 tháng 10 2020 lúc 19:57

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Bình luận (0)
 Khách vãng lai đã xóa
KK
4 tháng 10 2020 lúc 19:59

B3: Áp dụng bđt AM-GM

\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)

\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b>0\)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
TT
12 tháng 2 2018 lúc 8:04

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

Bình luận (0)
ND
Xem chi tiết
H24
25 tháng 5 2017 lúc 10:11

ko biết

Bình luận (0)
AN
25 tháng 5 2017 lúc 10:33

Ta có: 

\(\hept{\begin{cases}\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\\\frac{b^2}{1+a}+\frac{1+a}{4}\ge b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a^2}{1+b}\ge\frac{4a-b-1}{4}\\\frac{b^2}{1+a}\ge\frac{4b-a-1}{4}\end{cases}}\)

\(\Rightarrow A=\frac{a^2}{1+b}+\frac{b^2}{1+a}\ge\frac{4a-b-1}{4}+\frac{4b-a-1}{4}\)

\(=\frac{3}{4}\left(a+b\right)-\frac{1}{2}\ge\frac{3}{4}.2\sqrt{ab}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=1\)

Dấu = xảy ra khi \(a=b=1\)

Bình luận (0)
PH
27 tháng 5 2017 lúc 20:14

a=b=1 quá dễ

Bình luận (0)
HP
Xem chi tiết
TN
23 tháng 8 2016 lúc 12:09

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

Bình luận (0)
PH
11 tháng 1 2019 lúc 21:16

2 + 2 =22

Bình luận (0)
PH
3 tháng 3 2019 lúc 20:34

5555555555555 = 5 x 5 x ........

Bình luận (0)
TL
Xem chi tiết
KN
28 tháng 5 2020 lúc 18:05

Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)

\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)

Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
PQ
27 tháng 7 2020 lúc 15:10

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\Leftrightarrow\)\(\frac{1+a^3}{1+ab^2}\ge\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}\)

\(\Rightarrow\)\(3P\ge\Sigma\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}+2\Sigma\frac{1+a^3}{1+ab^2}\ge9\sqrt[9]{\frac{\Pi\left(1+ab^2\right)^2}{\Pi\left(1+a^3\right)^2}\left(\frac{\Pi\left(1+a^3\right)}{\Pi\left(1+ab^2\right)}\right)^2}=9\)

\(\Rightarrow\)\(P\ge3\)

dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
MN
23 tháng 8 2016 lúc 17:59

khó phết

Bình luận (0)
YY
23 tháng 8 2016 lúc 18:11

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT = A + b và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))

Dấu = khi a = b = c = 1 .

Bình luận (2)
LF
23 tháng 8 2016 lúc 18:25

Yuzuri Yukari:copy câu trả lời của tôi 

Bình luận (0)