Những câu hỏi liên quan
LH
Xem chi tiết
TL
Xem chi tiết
TA
3 tháng 7 2017 lúc 11:23

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

Bình luận (0)
H24
2 tháng 7 2017 lúc 23:19

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

Bình luận (0)
LD
Xem chi tiết
VM
Xem chi tiết
H24
13 tháng 2 2018 lúc 19:31

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

Bình luận (0)
CX
Xem chi tiết
LV
28 tháng 5 2016 lúc 14:35

a, 59x + 46y = 2004

Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn

=> x là số chẵn, mà x là số nguyên tố

=> x = 2

=> 2.59 + 46y = 2004

=> 46y = 2004 ‐ 118

=> 46y = 1886

=> y = 1886:46 => y = 41

Vậy x = 2; y = 41

Bình luận (0)
LT
29 tháng 5 2016 lúc 11:43

đã làm đề 23 rùi hả!!!!!

Bình luận (0)
QD
Xem chi tiết
DL
1 tháng 7 2015 lúc 20:51

\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)

Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)

Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)

Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)

Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)

cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2

Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2

cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ

 

Bình luận (0)
DL
1 tháng 7 2015 lúc 20:54

Thạch ơi, cái bài này mk giải như thế đúng k?

Bình luận (0)
DL
1 tháng 7 2015 lúc 20:56

quên, mk sửa lại 1 tí nhé

cứ như vậy tiếp dần thì ta chỉ có n=1;4 thì p mới là số nguyên tố, thì p=2;11

Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2;11

Bình luận (0)
NK
Xem chi tiết
PT
Xem chi tiết
DV
6 tháng 6 2015 lúc 14:34

- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố

- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố

- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố 

- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố

- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)

, luôn là hợp số.

                                Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.

Bình luận (0)
PT
6 tháng 6 2015 lúc 15:01

thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt

Bình luận (0)
PT
Xem chi tiết
DT
6 tháng 6 2015 lúc 10:44

n=1,p=2

n=2,p=5

n=3,p=11

Bình luận (0)