cho A= \(\frac{2^{10}.2^{13}-2^{21}.20}{2^{24}}\)
tính giá trị biểu thức
tính giá trị của biểu thức sau:
A=\(\frac{2^{10}.2^{13}-2^{21}.20}{2^{24}}\)
\(A=\frac{2^{23}-2^{21}\cdot2^2\cdot5}{2^{24}}\)
\(A=\frac{2^{23}-2^{23}\cdot5}{2^{24}}\)
\(A=\frac{2^{23}\left(1-5\right)}{2^{24}}\)
\(A=\frac{-\left(2^{23}\cdot2^2\right)}{2^{24}}=-\frac{2^{25}}{2^{24}}=-2\)
Tính giá trị của biểu thức:
A = \(5.2^4-\left(3^2+1\right)^{21}:10^{20}\)
A =5.24 - (32 + 1)21 : 1020
A = 5.16 - (9 + 1)21: 1020
A = 5.16 - 1021 : 1020
A = 5.16 - 10
A = 80 - 10
A = 70
Tính giá trị biểu thức sau bằng cách hợp lí:
A= 1/2 + (-1/7) - (-1/13) +-1/13 - (-2/5) + -11/21 +1/10
\(A=\frac{1}{2}+\frac{-1}{7}-\frac{-1}{13}+\frac{-1}{13}-\frac{-2}{5}+\frac{-11}{21}+\frac{1}{10}\)
\(A=\frac{5}{10}-\frac{3}{21}+\frac{1}{13}-\frac{1}{13}+\frac{4}{10}-\frac{11}{21}+\frac{1}{10}\)
\(A=\left(\frac{5+4+1}{10}\right)+\left(\frac{-3}{21}-\frac{11}{21}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)\)
\(A=1+\frac{-2}{3}=\frac{3-2}{3}=\frac{1}{3}\)
A=\(\frac{2^{10}×13+2^{10}×65}{2^8×104}\)
Tính giá trị biểu thức
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.\left(13+65\right)}{2^8.104}=\frac{2^{10}.78}{2^8.104}=3\)
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.104}=\frac{2^{10}.78}{2^8.104}=\frac{2^2.78}{104}=\frac{2^2.2.39}{2^3.13}=\frac{2^3.39}{2^3.13}=3\)
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=>A=\frac{2^{10}.\left(65+35\right)}{2^8.104}=\frac{2^{10}.78}{2^8.104}=3\)
a) A=2/15+2/35+2/63+...+2/369
b) A=6/1518+6/18+6/21*24+...+6/8760
c) A=1/10+1/15+1/21+...+1/120
đầu bài tính giá trị của biểu thức làm được like cho
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}\)
Tính giá trị biểu thức sau
A =\(\frac{10-1\frac{1}{6}x\frac{6}{7}}{21:\frac{11}{2}+5\frac{2}{11}}\)
\(A=\frac{10-1\frac{1}{6}\times\frac{6}{7}}{21:\frac{11}{2}+5\frac{2}{11}}\)
\(A=\frac{10-\frac{7}{6}\times\frac{6}{7}}{21:\frac{11}{2}+\frac{57}{11}}\)
\(A=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}\)
\(A=\frac{9}{9}=1\)
Tính giá trị biểu thức :
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\frac{2^{10}.\left(13+65\right)}{2^8.104}\)
\(=\frac{2^{10}.78}{2^8.104}\)
\(=\frac{2^8.2^2.78}{2^8.104}\)
\(=\frac{2^8.4.78}{2^8.104}\)
\(=\frac{2^8.312}{2^8.104}\)
\(=\frac{2^8.3.104}{2^8.104}=3\)
21 Cho ba số phân biệt a,b,c . Chứng minh rằng biểu thức
A=a^4(b-c)+b^4(c-a)+c^4(a-b) luôn khác 0
23 Cho x, y là các số dương thỏa mãn điều kiện 9y(y-x)= 4x^2
Tính giá trị biểu thức\(\frac{x-y}{x+y}\)
24 Cho x,y là số khác 0 sao cho 3x^2-y^2=2xy
Tính giá trị của phân thức A= \(\frac{2xy}{-6x^2+xy+y^2}\)
21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.
23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)
Chia cả hai vế của đẳng thức trên với \(y^2>0\)được :
\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)
\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)
Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :
\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)
24. Tương tự câu 23 , ta được \(x=y\) hoặc \(y=-3x\)(loại trường hơp này vì mẫu thức phải khác 0)
Vậy với x = y được \(A=-\frac{1}{2}\)
Tính giá trị của biểu thức:
a, 15/34 +7/21+19/34-20/15+3/7
b, 12-8×(3/2)^3
c,(1/9)^2005×9^2005-96^2÷24^2
\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)
\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)
\(=>1+\frac{16}{21}-\frac{20}{15}\)
\(=>\frac{37}{21}-\frac{20}{15}\)
\(=>\frac{3}{7}\)
\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)
\(=>12-8\cdot\frac{27}{8}\)
\(=>12-27\)
\(=>-15\)
\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)
\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)
\(=>\left(1^{2005}\right)-16\)
\(=>1-16\)
\(=>-15\)