Những câu hỏi liên quan
NM
Xem chi tiết
BT
28 tháng 3 2020 lúc 9:30

ta có: ab = BCNN(a;b) . ƯCLN(a;b)

        => 448= BCNN(a;b) . 4

        => BCNN(a;b) = 448:4=112

vì ƯCLN(a;b)= 4

=> a chia hết cho 4; b chia hết cho 4

=> a= 4m; b= 4n và (m;n)=1

mà ab= 448

=> 4m. 4n = 448

=> 16mn= 448

=> mn= 28 (= 28.1= 14.2=7.2)

mà (m;n)=1 => m = 28; n=1 hoặc m=7; n=4

+ nếu m= 28; n=1 => a = 4.28= 112; b= 4.1=4

+ nếu m=7; n=4 => a= 4.7= 28; b= 4.4= 16

vậy (a;b)= { (112;4); (4;112); (28;16); (16;28) }

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LQ
22 tháng 12 2020 lúc 22:03

    ƯCLN(a,b) = 15

=> \(\hept{\begin{cases}a⋮15\Rightarrow a=15m\\b⋮15\Rightarrow b=15n\end{cases}}\left(m,n\inℕ^∗;\right)ƯCLN\left(a,b\right)=1\)

     Thay vào 2a+b=75, ta có

\(2.15m+15n=75\)

\(15\left(2m+n\right)=75\)

\(2m+n=5\)

Ta lập bảng

2m1234
mloại1loại2
nloại3loại1

ĐÁP SÔ ...

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NT
Xem chi tiết
VC
3 tháng 11 2017 lúc 20:27

a=6,b=78

Bình luận (0)
NT
3 tháng 11 2017 lúc 20:31

bạn có thể giải ra được ko ?

Bình luận (0)
H24
Xem chi tiết
TH
5 tháng 8 2023 lúc 9:41

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a + b = 66 (1)
GCD(a, b) = 6 (2)

Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.

Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:

a = 5m
b = 6n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

5m + 6n = 66

Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.

Thử m = 1, ta có:

5 + 6n = 66
6n = 61
n ≈ 10.17

Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.

Thử m = 2, ta có:

10 + 6n = 66
6n = 56
n ≈ 9.33

Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.

Thử m = 3, ta có:

15 + 6n = 66
6n = 51
n ≈ 8.5

Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.

Thử m = 4, ta có:

20 + 6n = 66
6n = 46
n ≈ 7.67

Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.

Thử m = 5, ta có:

25 + 6n = 66
6n = 41
n ≈ 6.83

Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.

Thử m = 6, ta có:

30 + 6n = 66
6n = 36
n = 6

Với m = 6 và n = 6, ta có:

a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36

Vậy, hai số tự nhiên cần tìm là 30 và 36.

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a - b = 84 (1)
UCLN(a, b) = 12 (2)

Ta có thể viết lại a và b dưới dạng:

a = 12m
b = 12n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

12m - 12n = 84

Chia cả hai vế của phương trình cho 12, ta có:

m - n = 7 (3)

Từ (2) và (3), ta có hệ phương trình:

m - n = 7
m + n = 12

Giải hệ phương trình này, ta có:

m = 9
n = 3

Thay m và n vào a và b, ta có:

a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36

Vậy, hai số tự nhiên cần tìm là 108 và 36.

Bình luận (0)
NT
5 tháng 8 2023 lúc 9:44

1) \(a+b=66;UCLN\left(a;b\right)=6\)

\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)

mà có 1 số chia hết cho 5

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)

Vậy 2 số đó là 30 và 36 thỏa đề bài

2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)

\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)

Vậy 2 số đó là 48 và 36 thỏa đề bài

Bình luận (0)
NT
5 tháng 8 2023 lúc 9:46

Đính chính câu 2 \(a-b=84\) không phải \(a-b=66\)

Bình luận (0)
PH
Xem chi tiết
LA
6 tháng 9 2016 lúc 22:24

Ta có: UCLN(a;b) = 15  => a = 15m và b = 15n (Với m ; n khác 0)

Ta lại có: BCNN(a;b) = 300

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

Bình luận (0)
DN
15 tháng 1 2018 lúc 14:38

Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).

Ta lại có : BCNN ( a ; b ) = 300

Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )

=> a . b = 300 . 15 = 4500 (*)

Thay a = 15m và b = 15n vào (*) ta được :

15m . 15n = 4500

<=> ( 15 . 15 ) mn = 4500

<=> 225mn = 4500

<=>       mn = 4500 : 225

<=>       mn = 20

Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20

=> Ta có bảng :

m45120
n54201
a607515300
b756030015
Bình luận (0)
HM
22 tháng 6 2018 lúc 18:03

Có 2 số tự nhiên cần tìm là a và b \(\left(a\ge b\right)\)

Ta có :

\(BCNN\left(a,b\right)\cdotƯCLN\left(a,b\right)=a\cdot b\)

\(\Rightarrow300\cdot15=a\cdot b\)

\(\Rightarrow a\cdot b=4500\)

\(\Rightarrow a=15m;b=15n\left(m,n=1\right);\left(m>n\right)\)

Lại có :

\(a\cdot b=4500\)

\(\Rightarrow15m\cdot15n=4500\)

\(\Rightarrow15\cdot15\cdot\left(m\cdot n\right)=4500\)

\(\Rightarrow225\cdot\left(m\cdot n\right)=4500\)

\(\Rightarrow m\cdot n=4500:225\)

\(\Rightarrow m\cdot n=20\)

Ta sẽ có được bảng sau :

\(m\)\(5\)\(20\)
\(n\)\(4\)\(1\)
\(a\left(a=15m\right)\)\(75\)\(300\)
\(b\left(b=15n\right)\)\(60\)\(15\)
Bình luận (0)
BB
Xem chi tiết
VT
7 tháng 9 2016 lúc 8:46

Ta có: \(ƯCLN\left(a,b\right)=15\Rightarrow a=15m\)    và \(b=15n\)(Với \(m;n\ne0\))

Ta lại có: \(BCNN\left(a,b\right)=300\)

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

Bình luận (0)
TN
28 tháng 2 2022 lúc 20:48

Ta có: ƯCLN(a,b)=15⇒a=15mƯCLN(a,b)=15⇒a=15m    và b=15nb=15n(Với m;n≠0m;n≠0)

Ta lại có: BCNN(a,b)=300BCNN(a,b)=300

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

Bình luận (0)
CM
Xem chi tiết
SG
6 tháng 9 2016 lúc 22:32

Do ƯCLN(a; b) = 15 => a = 15.m; b = 15.n (m;n)=1

=> BCNN(a; b) = 15.m.n = 300

=> m.n = 300 : 15 = 20

Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=20;n=1\\m=5;n=4\end{array}\right.\)

+ Với m = 20; n = 1 thì a = 20.15 = 300; b = 1.15 = 15

+ Với m = 5; n = 4 thì a = 5.15 = 75; b = 4.15 = 60

Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (300;15) ; (75;60) ; (60;75) ; (15;300)

Bình luận (0)
LA
Xem chi tiết
DH
26 tháng 10 2021 lúc 15:03

\(ab=\left[a,b\right]\left(a,b\right)=300.15=450\)

\(\left(a,b\right)=15\)nên ta đặt \(a=15m,b=15n\)khi đó \(\left(m,n\right)=1\).

\(ab=15m.15n=225mn=4500\Leftrightarrow mn=20\)

Vì \(\left(m,n\right)=1\)nên ta có bảng giá trị: 

m14520
n20541
a156075300
b300756015
Bình luận (0)
 Khách vãng lai đã xóa