cho ba số thực dương x y z thỏa mãn x+y+z=47/12 tìm MIN Q=3x^2+4y^2+5z^2
Cho các số thực x;y;z ≥1 thỏa mãn \(3x^2+4y^2+5z^2=52\). Tìm GTNN của:
F = x + y + z
Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)
Ta có :
\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)
\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)
\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)
\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)
Do đó \(x+y+z=a+b+c+3\ge5\)
Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)
Chúc bạn học tốt !!!
Bớt copppy đưa link tử tế cái :)))):
Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...
Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net
Search mạng đầy vler :333
vì x,y \(\ge\)1 nên ( x - 1 )( y - 1 ) \(\ge\)0 \(\Leftrightarrow\)xy \(\ge\)x + y - 1
Tương tự : yz \(\ge\)y + z - 1 ; xz \(\ge\)x + z - 1
Cộng lại, ta được : xy + yz + xz \(\ge\)2 ( x + y + z ) - 3
Do đó : 5 ( x + y + z )2 = 5 ( x2 + y2 + z2 ) + 10 ( xy + yz + xz ) \(\ge\)52 + 2x2 + y2 + 10 . [ 2( x+y+z ) - 3 ]
\(\ge\)52 + 2 + 1 + 20 ( x+y+z ) - 30 = 25 + 20 ( x+ y + z )
\(\Rightarrow5\left(x+y+z\right)^2-20\left(x+y+z\right)-25\ge0\)
\(\Rightarrow x+y+z\ge5\). Dấu " = " xảy ra khi x = y = 1 ; z = 3
Cho x,y,z là các số dương thỏa mãn :
\(5x^2+2xyz+4y^2+3z^2=60\)
Tìm min của x+y+z
Cho 3 số thực dương thỏa mãn x , y ,z thỏa mãn điều kiện x + y + z = xyz . Tìm Min của biểu thức
\(Q =\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
- Đề thi vào 10 Thanh Hóa 2020 - 2021 -
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Cho các số thực dương thỏa mãn : \(xy+yz+zx=1\)
Tìm min của : \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\).
Áp dụng bđt Svacsơ ta có :
\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)
\(\Rightarrow x+y+z\ge\sqrt{3}\)
\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)
cho ba số x, y, z thỏa mãn các điều kiện sau :
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)và 3x - 2y + 5z= 96
Tìm x , y , z
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
1) Cho x, y, z là ba số dương phân biệt. Hãy tìm tỉ số x/y ,biết rằng:
y/x-z=x+y/z=x/y
2) Tìm các số x, y, z , biết rằng
x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
cho x,y,z là các số thực thỏa mãn 2(y^2 + yz + z^2) + 3x^2 =36 Tìm min và max A=x+y+z