Tìm GTNN của \(A=\frac{2010x+2680}{x^2+1}\)
Tìm GTNN của biểu thức \(A=\frac{2010x+2680}{x^2+1}\)
tìm GTNN của biểu thức A = \(\frac{2010x+2680}{x^2+1}\)
Tìm GTNN của A= (2010x+2680)/(x^2+1)
tì GTNN của b thức
A=\(\frac{2010x+2680}{x^2+1}\)
mik cần gâps ạ
\(A=\frac{2010x+2680}{x^2+1}\)
\(\Leftrightarrow Ax^2+A=2010x+2680\)
\(\Leftrightarrow Ax^2-2010x+A-2680=0\)
*Nếu A = 0 thì x = -4/3
*Nếu A khác 0
Pt có nghiệm khi \(\Delta'\ge0\)
\(\Leftrightarrow1010025-A^2+2680A\ge0\)
\(\Leftrightarrow-335\le A\le3015\)
BIến đổi A thành: \(\left(\frac{2010x+2680}{x^2+1}+335\right)-335\) quy đồng lên + phân tích thành bình phương là ra thôi:v
Tìm giá trị nhỏ nhất của biểu thức A =\(\frac{2010x+2680}{x^2+1}\)
\(\text{Ta có:}A=\frac{2010x+2680}{x^2+1}=\frac{-335x^2+335x^2-335+2010x+2680+335}{x^2+1}.\)
\(=\frac{-335\left(x^2+1\right)+335\left(x^2+6x+9\right)}{x^2+1}=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)
\(\text{Vậy GTNN của A=-335. Dấu bằng xảy ra khi và chỉ khi }x+3=0\Leftrightarrow x=-3\)
\(A=\frac{2010x+2680}{x^2+1}\)
\(=\frac{-355x^2-355+355x^2+2010x+3015}{x^2+1}\)
\(=-355+\frac{355.\left(x+3\right)^2}{x^2+1}\ge-335\)
Vậy GTNN của A là -335 khi x=-3
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2010x+2680}{x^2+1}\)
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{2010x+2680}{x^2+1}\)
\(A=\frac{2010x+2680}{x^2+1}\)
\(\Leftrightarrow Ax^2-2010x+A-2680=0\)
\(\Delta=\left(-2010\right)^2-4A\left(A-2680\right)\)
\(=-4\left(A-3015\right)\left(A+335\right)\)
Có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(A-3015\right)\left(A+335\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}A\le3015\\A\ge-335\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{2010x+2680}{x^2+1}\)
Ta có:A=\(\frac{335x^2+2010x+3015-\left(335x^2+335\right)}{x^2+1}\)
= \(\frac{335\left(x^2+6x+9\right)}{x^2+1}-\frac{335\left(x^2+1\right)}{x^2+1}\)
=\(\frac{335\left(x+3\right)^2}{x^2+1}-335\)
Ta có: (x+3)2>= 0
=>335(x+3)2>=0
Mà x2+1>0
=>\(\frac{335\left(x+3\right)^2}{x^2+1}\ge0\)
=>\(\frac{335\left(x+3\right)^2}{x^2+1}-335\ge-335\)
=>A>= -335
Dấu "=" xảy ra <=> (x+3)2=0
<=> x+3=0
<=> x=-3
Vậy ...
Tìm giá trị nhỏ nhất của
A =\(\frac{2010x+2680}{x^2+1}\)