Những câu hỏi liên quan
TT
Xem chi tiết
NT
31 tháng 1 2017 lúc 21:39

Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

Bình luận (0)
BD
12 tháng 12 2018 lúc 12:05

đơngiản tự nghĩ lấy hỏi gì mà hỏi 

Bình luận (0)
H24
10 tháng 11 2020 lúc 16:37

lêu lêu

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
KT
28 tháng 3 2019 lúc 20:50

đẻ n2+ 2002  là số chính phương 

=> n2+2002= a2 (a lá số tự nhiên khác 0)

=>a2-n2=2002

=> (a-n)(a+n)=2002

do 2002 chia hết cho 2 suy ra  a-n hoặc a+n chia hết cho 2 mà a-n-(a+n)=-2n chia hết cho 2

=>a-n và a+n cùng tính chẵn lẻ => a-n,a+n chia hết cho 2

=> (a-n)(a+ n) chia hết cho 4 mà 2002 chia hết cho 4

 điều này là vô lí

hok tốt

kt

Bình luận (0)
SC
28 tháng 3 2019 lúc 20:51

https://olm.vn/hoi-dap/detail/70760530637.html

Bình luận (0)
DL
Xem chi tiết
H24
17 tháng 3 2016 lúc 19:44

giả sư tồn tại n sao cho n2+2002 là số chính phương

Đặt n2+2002=m(m thuộc N )

=> m2-n= 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)

vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2

=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.

Bình luận (0)
BB
Xem chi tiết
TA
14 tháng 2 2016 lúc 15:09

Giả sử 2+2002=m2 (m thuộc N)=>m2 -n2 = 2002
Vì hiệu của 2 số chính phương chia cho 4 ko có số dư là 2
mà 2002 : 4 dư 2
Vậy ko có số tự nhiên n nào để n+2002 là số chính phương,

Bình luận (0)
NP
14 tháng 2 2016 lúc 15:10

bó tay tui ms hok lớp 6

Bình luận (0)
BQ
Xem chi tiết
HA
15 tháng 4 2016 lúc 20:30

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

Bình luận (0)
HT
15 tháng 4 2016 lúc 20:26

Các cách giải trên nói chung là được và mình cũng muốn đóng góp thêm cách này 

Một tính chất của số chính phương: x^2 chia 4 chỉ có thể dư 0 hoặc 1 (bạn tự chứng minh nha) 
Đặt x^2 + 2002 = y^2 

+ Nếu x^2 chia hết cho 4 => x^2 + 2002 chia 4 dư 2 => y^2 chia 4 dư 2, vô lí vì y^2 chia 4 chỉ có thể dư 0 hoặc 1 

+ Nếu x^2 chia 4 dư 1 => x^2 + 2002 chia 4 dư 3 => y^2 chia 4 dư 3, cũng vô lí nôt 

Vậy pt vô nghiệm 

p/s: ko biết bài này có phải trong đề tuyển sinh TP. HCM năm 2002 - 2003 ko ta?

Đúng không Bùi Minh Quân

Bình luận (0)
HP
15 tháng 4 2016 lúc 20:30

Giả sử n2+2002=a2 (a là số nguyên dương)

Khi đó a2-n2=2002<=>(a+n)(a-n)=2002.Do đó trong 2 số a+n và a-n phải có 1 số chẵn

Mặt khác (a+n)+(a-n)=2a là số chẵn nên 2 số a+n và a-n cùng tính chẵn-lẻ nên 2 số a+n và a-n đều là 2 số chẵn

=>(a+n)(a-n) chia hết cho 4.Nhưng 2002 ko chia hết cho 4

=>điều giả sử là sai

Vậy ko có số tự nhiên n nào để...................

Bình luận (0)
LL
Xem chi tiết
BM
Xem chi tiết
PH
30 tháng 11 2018 lúc 17:17

n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9

Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3

Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.

Do đó: n2 + 2002 không là số chính phương với mọi n là STN.

Bình luận (0)
NB
Xem chi tiết
NL
Xem chi tiết
DH
15 tháng 4 2016 lúc 22:06

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

Bình luận (0)
H24
16 tháng 4 2016 lúc 7:06

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

Bình luận (0)