\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\) va x+y+z=30.Tim x,y,z
tim x,y,z khi
\(\frac{x}{7}=\frac{y}{3}va\)x-24=y
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)va y-x=48
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)va x-y- z=28
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)va 2x+3-z=-14
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
Tim x,y,z :
a) x=y:2,\(\frac{y}{4}=\frac{z}{5}\)va 2x+2y-z-7=0
b)\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)va x-y=15
c)\(\frac{x}{y}=\frac{2}{3}\), \(\frac{x}{z}=\frac{1}{2}\)va \(x^3\)- xyz=-16
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
b) Ta có: \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\) <=> \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> \(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}}\) => \(\hept{\begin{cases}x=30.2=60\\y=30.\frac{3}{2}=45\\z=30.\frac{4}{3}=40\end{cases}}\)
Vậy ...
Tim x,y va z neu \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{\left(y+z-2\right)+\left(z+x-3\right)+\left(x+y+5\right)}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y +z = 1/2 => y + z = 1/2 - x
\(\frac{x}{y+z-2}=\frac{1}{2}\Rightarrow y+z-2=2x\) => \(\frac{1}{2}-x-2=2x\) => \(-\frac{3}{2}=3x\Rightarrow-\frac{1}{2}=x\)
tương tự, \(\frac{y}{z+x-3}=\frac{1}{2}\Rightarrow2y=z+x-3\) => \(2y=\frac{1}{2}-y-3\) => 3y = -5/2 => y = -5/6
z = 1/2 - (x+y) = \(\frac{1}{2}-\left(-\frac{1}{2}-\frac{5}{6}\right)=\frac{1}{2}-\left(-\frac{8}{6}\right)=\frac{1}{2}+\frac{8}{6}=\frac{11}{6}\)
Tim x,y,z biet
a,5x= 8y= 20z va x-y-z = 3
b,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)va -x+y+z =120
c,\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)va x . y . z =20
d,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)va \(^{x^2+y^2-z^2}\)=585
nguyen tran phuong vy: vt sai kìa, phải là I don't know
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
tim x , y, z biet,\(\frac{z}{4}=\frac{y}{3};\frac{x}{2}=\frac{z}{5}\) va x+y+z=51
\(\frac{z}{4}=\frac{y}{3}\Rightarrow\frac{z}{20}=\frac{y}{15}^{\left(1\right)}\)
\(\frac{x}{2}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{z}{20}^{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{8}=\frac{z}{20}=\frac{y}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{z}{20}=\frac{y}{15}=\frac{x+y+z}{8+20+15}=\frac{51}{43}\)
..... ( tới bước này bạn tự làm tiếp nhá )
\(\frac{z}{4}=\frac{y}{3}\Rightarrow\frac{z}{20}=\frac{y}{15}\)
\(\frac{x}{2}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{z}{20}\)
Suy ra: \(\frac{x}{8}=\frac{y}{15}=\frac{z}{20}=\frac{x+y+z}{8+15+20}=\frac{51}{43}\)
Vậy \(x=8.\frac{51}{43}=\frac{408}{43}\)
\(y=15.\frac{51}{43}=\frac{765}{43}\)
\(z=20.\frac{51}{43}=\frac{1020}{43}\)
tim x, y, z biet
1. \(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}\)
2.\(\frac{2x+2}{3}=\frac{3y-1}{4}=\frac{4x+2}{5}\)va x+y+z=7
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
Câu 1 :
Áp dụng t/c dãy TSBN ta có : \(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y+x-y}{2015+2017}=\frac{x}{2016}\)
\(\Rightarrow\frac{xy}{2016}=\frac{x}{2016}\)=> xy=x => xy-x=0 => x(y-1)=0 => x=0 hoặc y=1
+) Nếu x=0 => \(\frac{0+y}{2015}=\frac{0.y}{2016}\Rightarrow\frac{y}{2015}=0\Rightarrow y=0\)
+) Nếu y=1 => \(\frac{x+1}{2015}=\frac{x.1}{2016}\)=> 2016(x+1)=2015x => 2016x+2016 = 2015x => x=-2016
Vậy ...
Câu 2 :
Áp dụng t/c dãy TSBN ta có : \(\frac{2x+2}{3}=\frac{3y-1}{4}=\frac{4z+2}{5}=\frac{6.\left(2x+2\right)+4.\left(3y-1\right)+3.\left(4z+2\right)}{3.6+4.4+5.3}\)
\(=\frac{12\left(x+y+z\right)+14}{49}=\frac{12.7+14}{49}=2\)
Từ \(\frac{2x+2}{3}=2\Rightarrow2x+2\Rightarrow6\Rightarrow2x=4\Rightarrow x=2\)
Tương tự tìm đc y=3 và z=2
Vậy ...
Tim cac so x,y,z biet \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)va x2 va y2 va z2
Tim x, y , z
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) va 2x+3y-z=50
Tim x,y,z, biet:
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2.x^2.y+z^3\)
b) \(2x=4y=5z\)va \(2x-3y-z=1\)
a) Xem lại đề
b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)
Vậy x = 10; y = 5 và z = 4
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)