CMR không tồn tại số tự nhiên n để n2+2020 là số chính phương
CMR:với mọi số tự nhiên a,tồn tại số tự nhiên b sao cho ab+4 là số chính phương
Đặt \(ab+4=m^2\left(m\in N^+\right)\)
\(\Rightarrow ab=m^2-4\)
\(\Leftrightarrow ab=\left(m-2\right)\left(m+2\right)\)
\(\Leftrightarrow b=\frac{\left(m+2\right)\left(m-2\right)}{a}\)
=> dpcm
1.CMR với mọi số tự nhiên n thì 3^n+4 không là số chính phương.
2.Tìm n thuộc N để n^2+2n +2 là số chính phương
Giải giúp mình.Càng nhanh càng tốt nha.
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
a) Tính giá trị biểu thức: \(A=\frac{\left(2003^2.2013+31.2004-1\right)\left(2003.2008+4\right)}{2004.2005.2006.2007.2008}\)
b) Tồn tại hay không số nguyên n để \(n^2+2006\)là số chính phương
tìm các số tự nhiên n để số 3n+19 là số chính phương
Tìm số tự nhiên n để n + 35 và n - 4 đều là các số chính phương
Tồn tại hay không số tự nhiên \(n\) để \(n^2+n+1\) chia hết cho 2015
. 2015 chia hết cho 5, vậy ta đặt vấn đề \(n^2+n+1\) có chia hết cho 5 không?
. Ta có: \(n^2+n=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp nên tận cùng chỉ có thể bằng 0,2,6
. => Tận cùng của \(n\left(n+1\right)+1\) là 1,3,7
. => \(n\left(n+1\right)+1\) không chia hết cho 5
. => \(n^2+n+1\) không chia hết cho 2015
. Vậy không tồn tại số tự nhiên n để \(n^2+n+1\) chia hết cho 2015
a.Biết rằng số tự nhiên n có thể viết được thành tổng của hai số chính phương. Chứng minh rằng 2n và 5n cũng viết được thành tổng của hai số chính phương.
b.Biết rằng số tự nhiên n thỏa mãn 2n có thể viết thành tổng hai số chính phương. Chứng minh rằng n cũng viết thành tổng hai số chính phương.
c.Chứng minh rằng nếu mỗi số tự nhiên m, n có thể viết thành tổng của hai số chính phương thì tích mn cũng viết được thành tổng hai số chính phương.
d.Chứng minh rằng \(2017^{2018}+2019^{2020}\)có thể viết thành hai lần của tổng của hai số chính phương.
Số chính phương là số bằng bình phương của một số tự nhiên.
Hỏi tổng của n số tự nhiên chẵn 2 đến 2n có thể là một số chính phương không? Vì sao?
ko ta có
2+4+6+...+2n=2.1+2.2+2.3+2.4+...+2.n=2(1+2+3+4+..+n)=2.n(n+1):2=n(n+1)