Cho p là số nguyên tố lớn hơn 3. CMINH 2401-p^2 chia hết cho 24
Cho P là số nguyên tố lớn hơn 3. CMR : 2401-P^2 chia hết cho 24
Cho P là số nguyên tố lớn hơn 3 chứng minh rằng 2401- P^2 chia hết cho 8
Cho 3 số : p, p+2014.k, p+2015.k là các số nguyên tố lớn hơn 3, p chia 3 dư 1. Cminh rằng k chia hết cho 6
giải :
vì p, p+2014k,p+2015k là SNT > 3 . => p, p+2014k, p+2015k là số lẻ 2015k là số lẻ k là số chẵn => k chia hết cho 2 Lại có p chia 3 dư 1 => p có dạng 3m + 1 Mà p+ 2014k là SNT => p+ 2014k ko chia hết cho 3 => 3m + 1 +2014k ko chia hết cho 3 Mà 3m chia hết cho 3 , 1 ko chia hết cho 3 => 2014k chia hết cho 3 => k chia hết cho 3( vì 2014 ko chia hết cho 3) k chia hết cho 3 ; 2 => k chia hết cho 6
Câu 1 : Cho p là số nguyên tố lớn hơn 3 . CMR (p-1)(p+1) chia hết cho 24
Câu 2 CMR nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho ...
Câu 3 : Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2009 là hợp số hay số nguyên tố .
Cho P là số nguyên tố P>3 cm P2-1chia hết cho 24
Cho a,b là số nguyên tố lớn hơn 3 cm a2-b2 chia hết cho 24
cho p là số nguyên tố lớn hơn 3. CMR p^2-1 chia hết cho 24
cho p là số nguyên tố lớn hơn 3. CMR p^2-1 chia hết cho 24
Cho p là số nguyên tố lớn hơn 3. CMR : p^2 - 1 chia hết cho 24
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p^2-1 chia hết cho 24
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.