Những câu hỏi liên quan
H24
Xem chi tiết
ND
Xem chi tiết
LT
Xem chi tiết
PL
Xem chi tiết
ND
10 tháng 3 2019 lúc 8:23

có điều kiện j k thế

Bình luận (0)
PL
10 tháng 3 2019 lúc 8:24

đề vậy thôi, nhưng cám ơn nha. mk biết lm oii

Bình luận (0)
TB
Xem chi tiết
H24
30 tháng 8 2017 lúc 15:46

2[x5x3-4x-9y-8z]x[4x-4x+6xy]=0

Bình luận (0)
OO
28 tháng 7 2018 lúc 16:34

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
H24
28 tháng 7 2018 lúc 16:34

k mk đi 

ai k mk

mk sẽ k lại

thanks

Bình luận (0)
NA
Xem chi tiết
ND
Xem chi tiết
H24
30 tháng 7 2015 lúc 10:08

\(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Bình luận (0)
H24
8 tháng 9 2018 lúc 8:43

Ta có: \(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Bình luận (0)
KN
25 tháng 9 2020 lúc 20:00

Ta có: \(x+y+z=0\Rightarrow x+y=-z\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy.\left(-z\right)=3xyz\Rightarrow\left(x^2+y^2+z^2\right)\left(x^3+y^3+z^3\right)=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left(y^2+z^2\right)+y^3\left(z^2+x^2\right)+z^3\left(x^2+y^2\right)=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow x^5+y^5+z^5+x^3\left[\left(y+z\right)^2-2yz\right]+y^3\left[\left(z+x\right)^2-2zx\right]+z^3\left[\left(x+y\right)^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left[x^2-2yz\right]+y^3\left[y^2-2zx\right]+z^3\left[z^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
BH
28 tháng 8 2017 lúc 20:10

em lp 6  a ơi

Bình luận (0)
QQ
Xem chi tiết