CMR: nếu (1-x)^2+(x-y)^2+(y-2)^2=0 thì x=y=z
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1
cmr nếu x,y,z khác 0 và x+y+z=0 thì x^4/yz + y^4/xz + z^4/xy = (5/2)(x^2+y^2+z^2)
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
xét 2 biểu thức: \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(Q=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cmr: nếu P=1 thì Q=0
đề vậy thôi, nhưng cám ơn nha. mk biết lm oii
CMR: nếu x+y+z =0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right).\)
tích mình với
ai tích mình
mình tích lại
thanks
CMR: Nếu (x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x)^2 + (z+x-2y)^2 + (x+y -2z)^2 thì x=y=z
CMR nếu: x+y+z=0 thì: 2(x5+y5+z5) = 5xyz(x2+y2+z2)
\(y+z=-x\)
\(\left(y+z\right)^5=-x^5\)
\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)
\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)
\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)
\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)
\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
Ta có: \(y+z=-x\)
\(\left(y+z\right)^5=-x^5\)
\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)
\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)
\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)
\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)
\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
Ta có: \(x+y+z=0\Rightarrow x+y=-z\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy.\left(-z\right)=3xyz\Rightarrow\left(x^2+y^2+z^2\right)\left(x^3+y^3+z^3\right)=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left(y^2+z^2\right)+y^3\left(z^2+x^2\right)+z^3\left(x^2+y^2\right)=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow x^5+y^5+z^5+x^3\left[\left(y+z\right)^2-2yz\right]+y^3\left[\left(z+x\right)^2-2zx\right]+z^3\left[\left(x+y\right)^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left[x^2-2yz\right]+y^3\left[y^2-2zx\right]+z^3\left[z^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\left(đpcm\right)\)
Bài 1: Cho - 1 \(\le\) x; y; z \(\le\)2 và x + y + z = 0. CMR x2 + y2 + z2 \(\le\) 6
Bài 2: CMR: Nếu ( x - y )2 + ( y - z )2 + ( z - x )2 = ( y + z - 2x )2 + ( z + x - 2y )2 + ( x + y - 2z )2 thì x = y = z
CMR
a) Nếu \(x^2+y^2+z^2=xy+yz+xz\)thì x=y=z
b) Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)