Những câu hỏi liên quan
MT
Xem chi tiết
KN
28 tháng 7 2019 lúc 11:20

\(M=\frac{5-x}{x-2}=-\frac{x-5}{x-2}=-\frac{x-2}{x-2}-\frac{3}{x-2}=-1-\frac{3}{x-2}\)

M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt giá trị  lớn nhất\(\Leftrightarrow x\)đạt giá trị nguyên dương nhỏ nhất  \(\Leftrightarrow x=1\)

Vậy GTNN của M là -4 khi và chỉ khi x = 1

Bình luận (0)
KN
28 tháng 7 2019 lúc 11:31

Cho làm lại :

\(M=\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)

M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt GTNN\(\Leftrightarrow x-2\)đạt giá trị âm lớn nhất

\(\Leftrightarrow x-2=-1\Leftrightarrow x=1\)

Vậy \(M_{min}=-4\Leftrightarrow x=1\)

Bình luận (0)
MK
Xem chi tiết
ND
23 tháng 2 2018 lúc 16:38

bt nào vậy bạn

Bình luận (0)
MK
23 tháng 2 2018 lúc 16:39

biểu thức M=2x-5/x

Bình luận (0)
QN
Xem chi tiết
DH
26 tháng 1 2018 lúc 16:12

Vì \(2x⋮x\Rightarrow-5⋮x\)

\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)

Thì Mmin = 1

Bình luận (0)
TP
Xem chi tiết
NU
3 tháng 2 2019 lúc 19:45

\(M=\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

de M dat gia tri nho nhat thi 5/x nho nhat 

=> x = -1

kl_

Bình luận (0)
H24
3 tháng 2 2019 lúc 20:49

 Phương Uyên 2-(-5)=+7(âm - âm=dương)  

Để \(M_{min}\Rightarrow\left(2-\frac{5}{x}\right)_{min}\Rightarrow\left(\frac{5}{x}\right)_{max}\)

ta thấy 5>0 và không đổi => x>0

mà để \(\left(\frac{5}{x}\right)max\Rightarrow x_{min}\text{ mà }x>0\Rightarrow x=1\left(x\in Z\right)\)

Vậy ....

p/s: nếu x=-1 =>\(2-\frac{5}{x}=2-\frac{5}{-1}=2+5=7\)

Bình luận (0)
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)
LH
Xem chi tiết
DT
3 tháng 3 2017 lúc 16:17

15/10

Bình luận (0)
TD
Xem chi tiết
NT
Xem chi tiết
NT
22 tháng 7 2021 lúc 20:18

Toán lớp 6 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết