Những câu hỏi liên quan
ND
Xem chi tiết
HH
17 tháng 3 2018 lúc 13:31

Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.

Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.

Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017. 

Bình luận (0)
ER
Xem chi tiết
PL
6 tháng 3 2020 lúc 20:57

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

Bình luận (0)
 Khách vãng lai đã xóa
H24
6 tháng 3 2020 lúc 20:57

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
6 tháng 3 2020 lúc 20:58

Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Ta có : \(\left|x-2017\right|\ge0\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)

Hay : \(A\ge\frac{2018}{2019}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)

Bình luận (0)
 Khách vãng lai đã xóa
KB
Xem chi tiết
LC
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
VH
Xem chi tiết
MS
19 tháng 12 2017 lúc 16:33

\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|=\left|x-2016\right|+\left|x-2017\right|+\left|2018-x\right|+\left|2019-x\right|\ge\left|x-2016+x-2017+2018-x+2019-x\right|=4\)

Bình luận (0)
VP
19 tháng 12 2017 lúc 17:25

A=|x−2016|+|x−2017|+|x−2018|+|x−2019|=|x−2016|+|x−2017|+|2018−x|+|2019−x|≥|x−2016+x−2017+2018−x+2019−x|=4A=|x−2016|+|x−2017|+|x−2018|+|x−2019|=|x−2016|+|x−2017|+|2018−x|+|2019−x|≥|x−2016+x−2017+2018−x+2019−x|=4

Bình luận (0)
LT
Xem chi tiết
NN
3 tháng 2 2020 lúc 20:24

\(C=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Vì \(\left|x-2017\right|\ge0;\forall x\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019;\forall x\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019};\forall x\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019};\forall x\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge\frac{2018}{2019};\forall x\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2017\right|=0\)

                     \(\Leftrightarrow x=2017\)

Vậy \(C_{min}=\frac{2018}{2019}\)\(\Leftrightarrow x=2017\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
3 tháng 2 2020 lúc 20:25

THANKS BẠN NHA

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
H24
24 tháng 11 2019 lúc 20:45

M = | x - 2019 | + | x - 2018 | - 2017

M = | x - 2019 | + | x - 2018 | - 2017 \(\ge\)- 2017

Dấu " = " xảy ra \(\Leftrightarrow\)x - 2019 = 0 hoặc x - 2018 = 0

\(\Rightarrow\)x = 2019 hoặc x = 2018

Min M = - 2017 \(\Leftrightarrow\)x = 2019 hoặc x = 2018

Bình luận (0)
 Khách vãng lai đã xóa
TP
24 tháng 11 2019 lúc 20:56

*) Ta chứng minh bổ đề: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)

\(\Leftrightarrow2\left|ab\right|\ge2ab\) 

\(\Leftrightarrow\left|ab\right|\ge ab\) ( luôn đúng ) 

Dấu "=" xảy ra khi \(ab\ge0\)

Theo bài cho: M = |x-2019| + |x-2018| - 2017

=> M = |x - 2019| + |2018 - x| - 2017

Áp dụng bổ đề trên => | x - 2019 | + | 2018 - x| \(\ge\) | x - 2019 + 2018 - x |

=> | x - 2019 | + | 2018 - x | \(\ge\)1

=> | x - 2019 | + | 2018 - x | - 2017 \(\ge\)1 - 2017

=> M \(\ge\)-2016

Dấu "=" xảy ra khi ( x - 2019 ).( 2018 - x)\(\ge\)0

Ta xét 2 trường hợp:

+) Nếu \(\hept{\begin{cases}x-2019\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2019\\x\le2018\end{cases}}\)( loại )

+) Nếu \(\hept{\begin{cases}x-2019\le0\\2018-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2019\\x\ge2018\end{cases}}\)\(\Leftrightarrow2018\le x\le2019\)( thỏa mãn )

Vạy: GTNN của M = -2016 khi \(2018\le x\le2019\)

Bình luận (1)
 Khách vãng lai đã xóa