Những câu hỏi liên quan
MT
Xem chi tiết
DA
15 tháng 11 2017 lúc 21:20

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

Bình luận (0)
TN
17 tháng 11 2017 lúc 8:19

Đáp số : 3

Bình luận (0)
NA
19 tháng 11 2020 lúc 20:24

a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )

    Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)

                         +) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )

    Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2

    +) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )

    +) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )

                            Vậy P = 3

 Đề bài câu b phải là P + 2 và P - 2 nhé!

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
H24
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Bình luận (0)
TL
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Bình luận (0)
My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ

Bình luận (0)
KM
Xem chi tiết
LA
Xem chi tiết
LA
3 tháng 11 2018 lúc 12:52

phàn dưới mik chép thiếu nha, đề bài đầy đủ là

tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16 cũng là số nguyên tố

Bình luận (0)
NT
3 tháng 11 2018 lúc 12:53

p=3,p=7

Bình luận (0)
LA
3 tháng 11 2018 lúc 12:54

bạn ơi cho mình lòi giải với

Bình luận (0)
NK
Xem chi tiết
BL
16 tháng 4 2024 lúc 20:35

A ) nếu p=2 thì p+4=2+4=6(loại)

nếu p=3 thì p+4=3+4=7và p+10=3+10=13(thỏa mãn)

nếu p>3 thì ta có dạng p=3k+1 và p=3k+2

trường hợp 1: p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3 (loại)

trường hợp 2: p=3k+1 thì p+4=3k+1+4=3k+5

mà 3k+5=3k+3+2=3(k+1)+2 \(\Rightarrow\)p+10=3(k+1)+2+10=3(k+1)+12  (loại)

                 vậy p=3 thì p+10,p+4 là số nguyên tố

B)nếu q=2 thì q+2=2+2=4 (loại)

nếu q=3 thì q+2=3+2=5 và q+8=3+8=11 ( thỏa mãn)

nếu q>3 ta có dạng q=3k+1 và q=3k+2

trường hợp 1: q=3k+1  thì q+8=3k +1 +8=3k + 9 chia hết cho 3 ( loại)

trường hợp 2: q=3k +2 thì q+8=3k+2+8 =3k+10=3k+9+1=3(k+3)+1

\(\Rightarrow\)q+8=3(k+3)+1+8=3(k+3)+9 chia hết cho 3 ( loại)

            vậy q=3 thì q+2,q+8 là số nguyên tố

Bình luận (0)
H24
Xem chi tiết
NG
4 tháng 1 2023 lúc 14:18

a)nếu p=2 thì :

p+10=2+10=12 là hợp số(loại)

nếu p=3 thì:

p+10=3+10=13 là số nguyên tố 

p+14=3+14=17 là số nguyên tố

(thỏa mãn)

nếu p>3 thì:

p sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:p=3k+1

nếu p=3k+1 thì:

p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:p=3k+2

nếu p=3k+2 thì:

p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  p>3 thì không có giá trị nào thỏa mãn

vậy p=3

b)nếu q=2 thì :

q+10=2+10=12 là hợp số(loại)

nếu q=3 thì:

q+2=3+2=5 là số nguyên tố 

q+10=3+10=13 là số nguyên tố

(thỏa mãn)

nếu q>3 thì:

q sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:q=3k+1

nếu q=3k+1 thì:

q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:q=3k+2

nếu q=3k+2 thì:

q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  q>3 thì không có giá trị nào thỏa mãn

vậy q=3

Bình luận (0)
CT
Xem chi tiết
ST
28 tháng 10 2015 lúc 20:13

Đặt : p = 3a + r ( với r = 0; 1; 2; a \(\in\) N )

Xét : r = 1

Ta có : 3a + 1 + 14

        = 3a + 15 ( mà 3a chia hết cho 3; 15 chia hết cho 3; 3a + 15 > 3 )

\(\Rightarrow\)p + 14 là hợp số

Xét : r = 2

Ta có : 3a + 2 + 10

         = 3a + 12 ( mà 3a chia hết cho 3; 12 chia hết cho 3; 3a + 12 > 3 )

\(\Rightarrow\)p + 10 là hợp số

Vậy : r = 0; p = 3a ( mà 3a là số nguyên tố )

\(\Rightarrow\)a = 1; p = 3

Đáp số : p = 3

Bình luận (0)
NT
Xem chi tiết
LD
Xem chi tiết
AH
21 tháng 10 2023 lúc 22:15

Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p+10, p+14$ cũng là snt (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$ thì đặt $p=3k+1$ với $k$ tự nhiên.

Khi đó $p+14=3k+15=3(k+5)\vdots 3$. Mà $p+14>3$ nên không thể là snt (trái giả thiết - loại) 

Nếu $p$ chia $3$ dư $2$ thì đặt $p=3k+2$ với $k$ tự nhiên.

Khi đó $p+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên không thể là snt (trái giả thiết - loại) 

Vậy $p=3$ là đáp án duy nhất thỏa mãn.

 

Bình luận (0)