Những câu hỏi liên quan
NH
Xem chi tiết
XO
25 tháng 7 2019 lúc 14:23

Ta có : \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)

\(\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}\right)\)

\(\frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-\right).n}\right)\)

\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(\frac{1}{4}.\left(1-\frac{1}{n}\right)\)

<  \(\frac{1}{4}.1=\frac{1}{4}\)

 \(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}\)

 \(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\left(đpcm\right)\)

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
SL
3 tháng 4 2016 lúc 9:04

1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4

CMR : Thì nó bé hơn thì cần gì phải chứng minh nhỉ ?

Bình luận (0)
H24
3 tháng 4 2016 lúc 9:15

Vì đầu bài yêu cầu cm=>điều dó phải đúng thì mới có thể cm đc

=>1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4

Bình luận (0)
PM
Xem chi tiết
NM
9 tháng 4 2017 lúc 20:24

Ta có

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)

=> ĐPCM

Bình luận (0)
DB
Xem chi tiết
DH
10 tháng 8 2017 lúc 13:35

\(S=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow S< \frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(\Rightarrow S< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\) (đpcm)

Bình luận (0)
H24
Xem chi tiết
SG
25 tháng 5 2016 lúc 15:01

1/42+1/62+1/82+...+1/(2n)2

=1/22.22+1/22.32+1/22.42+...+1/22.n2

=1/22.(1/22+1/32+1/42+...+1/n2)<1/22.(1/1.2+1/2.3+1/3.4+...+1/(n-1).n)

                                              <1/4.(1-1/2+1/2-1/3+1/3-1/4+...+1/n-1-1/n)

                                              <1/4.(1-1/n)<1/4

Bình luận (0)
EC
6 tháng 8 2016 lúc 19:43

1/42+1/62+1/82+...+1/(2n)2

=1/22.22+1/22.32+1/22.42+...+1/22.n2

=1/22.(1/22+1/32+1/42+...+1/n2)<1/22.(1/1.2+1/2.3+1/3.4+...+1/(n-1).n)

                                              <1/4.(1-1/2+1/2-1/3+1/3-1/4+...+1/n-1-1/n)

                                              <1/4.(1-1/n)<1/4

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
HH
Xem chi tiết
AH
25 tháng 12 2018 lúc 0:12

Lời giải:

Ta có:

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{(2n)^2}< \frac{1}{4^2-1}+\frac{1}{6^2-1}+\frac{1}{8^2-1}+...+\frac{1}{(2n)^2-1}(*)\)

Mà:

\(\frac{1}{4^2-1}+\frac{1}{6^2-1}+\frac{1}{8^2-1}+...+\frac{1}{(2n)^2-1}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{(2n-1)(2n+1)}\)

\(=\frac{1}{2}\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2n-1}-\frac{1}{2n+1}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2n+1}\right)\)

\(< \frac{1}{6}< \frac{1}{4}(**)\)

Từ \((*);(**)\Rightarrow N< \frac{1}{4}\) (đpcm)

Bình luận (0)