Tìm hai chữ số tận cùng của tổng sau:
\(b=3+3^2+3^3+...+3^{2009}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tổng của 3 số thập phân là 3,664. Nếu xóa chữ số 4ở tận cùng số thứ 1 ta được số thứ 2. Nếu xóa chữ số 3 ở tận cùng số thứ hai ta được số thứ 3 .Tìm 3 số đó
Nhớ ghi cả cách giải. Giúp mk mk tik cho
tìm chữ số tận cùng của 1^5 + 2^5 + 3^5 + ...+ 2019^5tìm chữ số tận cùng của 1^5 + 2^5 + 3^5 + ...+ 2019^5
Giải
Nhận xét : các số tự nhiên có số mũ dạng 4k + 1 thì luôn có giá trị bằng chính nó
Từ nhận xét trên ta xét tổng các chữ tận cùng của tổng các lũy thừa trên
Ta có tổng sau có chữ số tận cùng bằng tổng ban đầu
1 + 2 + 3 + 4 + 5 + 6 + ... + 2019 = 2019.(2019+1)/2
=2019.2020/2
Vì 2019.2020 có chữ số tận cùng bằng 0 nên 2019.2020/2 phải có chữ số tận cùng bằng 5
Vậy chữ số tận cùng của 1^5 + 2^5 + 3^5 + ... + 2019^5 là 5
Bài 1. Chứng minh rằng 8102 - 2102 chia hết cho 10.
Bài 2 . Tìm hai chữ số tận cùng của 2100.
Bài 3 . Tìm hai chữ số tận cùng của 71991
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
Bài 1: cho A =2+2^2+2^3+2^4+2^5+...+2^20
Tìm chữ số tận cùng của A
Bài2:tìm 2 chữ số tận cùng của các lũy thừa sau
51^51;6^666;99^99^99;14^101;16^101
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số thứ 2 là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ 2, số thứ tư là là chữ số tận cùng của tổng số thứ 2 và số thứ 3. Cứ tiếp tục như thế ta được dãy các số như sau : 1235831459437...... Trong dãy trên có xuất hiện số 2005 hay không?
Giải
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số
thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số
thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế
ta được dãy các số như sau : 1235831459437......
Trong dãy trên có xuất hiện số 2005 hay không ?
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số thứ 2 là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ 2, số thứ tư là là chữ số tận cùng của tổng số thứ 2 và số thứ 3. Cứ tiếp tục như thế ta được dãy các số như sau : 1235831459437...... Trong dãy trên có xuất hiện số 2005 hay không?
Tổng của hai số là 858. Số lớn có chữ số tận cùng bằng 0. Nếu xoá đi chữ số 0 thì được số bé. Tìm hai số đó?
Nếu xóa số 0 ở số lớn thì được số bé vậy số lớn gấp 10 lần số bé
Ta có sơ đồ :
Số lớn : |----|----|----|----|----|----|----|----|----|----|
Số bé : |----|
Số bé là : 858 : ( 10 + 1 ) x1 = 78
Số lớn là : 585 - 78 = 780
Tìm 2 chữ số tận cùng của 2^999 và 3^999
Tìm 3 chữ số tận cùng của số 5^9^2014
cho A=3+3^2+3^3+3^4+..............+3^2015 tìm chữ số tận cùng của A
A=(3^2015-1)/2
=(27.81^503-1)/2
tử A tận cùng (7.1-1)=6
do A không chia hết cho 4
=>S tận cùng =3.
làm lại:
A=3+3^2+3^3+3^4+..............+3^2015
=>3A=3^2+3^3+3^4+3^5+..............+3^2016
=>3A-A=(3^2+3^3+3^4+3^5+..............+3^2016) - ( 3+3^2+3^3+3^4+..............+3^2015)
=>2A=3^2016 - 3
=>A=\(\frac{3^{2016}-3}{2}\)
\(\Rightarrow A=\frac{\left(3^{504}\right)^4-3}{2}\)
\(\Rightarrow A=\frac{\left(...1\right)-3}{2}=\frac{\left(...8\right)}{2}=\left(...4\right)\)
Vậy A tận cùng là 4