B=1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20+1/21+1/22
Chứng tỏ B>1/2
chung to rang tong B sau lon hon 1/2 B=1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20+1/21+1/22
Lời giải:
Ta thấy $B$ có 11 số hạng. Mỗi số hạng phía trước $\frac{1}{22}$ đều lớn hơn $\frac{1}{22}$
Do đó $B> 11.\frac{1}{22}=\frac{1}{2}$ (đpcm)
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Tính 21-20+19+18-17-16+15+14-13-12+10+9-8-7+...-5-4+3+2-1
Tính nhanh
a) 23 - 21 + 19 - 17 + 15 - 13 + 11 - 9 + 7 - 5 + 3 - 1;
b) 24 - 22 + 20 - 18 + 16 - 14 + 12 - 10 + 8 - 6 + 4 - 2
a. ( 23 - 21) + ( 19 - 17) + ( 15 - 13) + ( 11 - 9) + ( 7 - 5) + ( 3 - 1)
= 2 + 2 + 2 + 2 + 2 + 2
= 2 x 6
= 12
b. ( 24 - 22 ) + ( 20 - 18 ) + ( 16 - 14 ) + ( 12 - 10) + ( 8 - 6 ) + ( 4 - 2)
= 2 + 2 + 2 + 2 + 2 + 2
= 2 x 6
= 12
bài 1
a. 5/18 + 8/19 - 7/21 + ( -10/36 + 11/19 + 1/3) - 5/8
b.1/13 + ( -5/18 - 1/13 + 12/17 ) - ( 12/17 - 5/18 + 7/5 )
c.15/14 - (17/23 - 80/87 + 5/4)+(17/23 - 15/14 + 1/4 )
d.1/25 - 4/27 + ( -23/27 + -1/25 - 5/43 ) + 5/43 - 4/7
bài 2
a. x +1/3 = 3/4
b. x - 2/5 = 5/7
c. -x - 2/3 = -6/7
d. 4/7 - x = 1/3
e. x+ 5/2 = -3/2
f. x + 5/6 = -1/12
GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN TRƯỚC
Bài 1:
a; \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{7}{21}\) + (- \(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{1}{3}\) -\(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{10}{36}\)) + (\(\dfrac{8}{19}\) + \(\dfrac{11}{19}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{5}{18}\)) + \(\dfrac{19}{19}\) - 0 - \(\dfrac{5}{8}\)
= 0 + 1 - \(\dfrac{5}{8}\)
= \(\dfrac{3}{8}\)
b; \(\dfrac{1}{13}\) + (\(\dfrac{-5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\)) - (\(\dfrac{12}{17}\) - \(\dfrac{5}{18}\) + \(\dfrac{7}{5}\))
= \(\dfrac{1}{13}\) - \(\dfrac{5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{12}{17}\) + \(\dfrac{5}{18}\) - \(\dfrac{7}{5}\)
= (\(\dfrac{1}{13}\) - \(\dfrac{1}{13}\)) + (\(\dfrac{12}{17}\) - \(\dfrac{12}{17}\)) + (-\(\dfrac{5}{18}\) + \(\dfrac{5}{18}\)) - \(\dfrac{7}{5}\)
= 0 + 0 + 0 - \(\dfrac{7}{5}\)
= - \(\dfrac{7}{5}\)
Bài 1 c;
\(\dfrac{15}{14}\) - (\(\dfrac{17}{23}\) - \(\dfrac{80}{87}\) + \(\dfrac{5}{4}\)) + (\(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\))
= \(\dfrac{15}{14}\) - \(\dfrac{17}{23}\) + \(\dfrac{80}{87}\) - \(\dfrac{5}{4}\) + \(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\)
= (\(\dfrac{15}{14}-\dfrac{15}{14}\)) + (\(-\dfrac{17}{23}+\dfrac{17}{23}\)) - (\(\dfrac{5}{4}\) - \(\dfrac{1}{4}\)) + \(\dfrac{80}{87}\)
= 0 + 0 - 1 + \(\dfrac{80}{87}\)
= - \(\dfrac{7}{87}\)
Bài 1 d;
\(\dfrac{1}{25}\) - \(\dfrac{4}{27}\) + (-\(\dfrac{23}{27}\) + \(\dfrac{-1}{25}\) - \(\dfrac{5}{43}\)) + \(\dfrac{5}{43}\) - \(\dfrac{4}{7}\)
= \(\dfrac{1}{25}\) - \(\dfrac{4}{27}\) - \(\dfrac{23}{27}\) - \(\dfrac{1}{25}\) - \(\dfrac{5}{43}\) + \(\dfrac{5}{43}\) - \(\dfrac{4}{7}\)
= (\(\dfrac{1}{25}\) - \(\dfrac{1}{25}\)) - (\(\dfrac{4}{27}\) + \(\dfrac{23}{27}\)) - (\(\dfrac{5}{43}\) - \(\dfrac{5}{43}\)) - \(\dfrac{4}{7}\)
= 0 - 1 - 0 - \(\dfrac{4}{7}\)
= \(\dfrac{-11}{7}\)
cho s=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. hãy so sánh với 1/2
Ta có các phân số 1/11 ; 1/12 ; 1/13 ; 1/14 ; 1/15 ; 1/16 ; 1/17 ; 1/18 ; 1/19 đều lớn hơn 1/20
Do đó : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/20 + 1/20 + ;...+ 1/20 ( có 10 phân số 1/20 )
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 10/20
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/2
Vậy : S > 1/2
Cho S= 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20, so sánh S và 1/2
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng)
\(=10.\frac{1}{20}=\frac{1}{2}\).
Vậy \(S>\frac{1}{2}\).
Cho S = 1/11 +1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. So sánh S với 1/2
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
Cho S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. Hãy so sánh S và 1/2
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2
1+2+3+4+5+6+7+8+9+10=
11+12+13+14+15+16+17+18+19+20=
1+2+3+4+5+6+7+8+9+10+11+12+13+14 +15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=
bạn5 bạn nào làm nhanh mình sẽ tích cho bạn đó
1+2+3+4+5+6+7+8+9+10=55
11+12+13+14+15+16+17+18+19+20=155
1+2+3+4+5+6+7+8+9+10+11+12+13+14 +15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=362
1+2+3+4+5+6+7+8+9+10=55
11+12+13+14+15+16+17+18+19+20=155
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=362