1 chia 2 bằng bao nhiêu các bạn chỉ giúp mình với
Tìm y,x,z biết:
a. (x-1) mũ 2+(y-3) mũ 10+(z+4) mũ 100=0
b.|x+3|+|y-5|+|2z-4|=0
a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)
Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)
Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)
Em làm tương tự với câu b, không hiểu gì thì hỏi anh
cho các đơn thức sau tìm nhóm đơn thức đồng dạng 5x mũ 2 y mũ 3; âm 5x mũ 3 y mũ 2; 1/2 x mũ 2 y mux2 z; x mũ 2 y mũ 3 âm 3/4 x mũ 3 mũ 2; âm x mũ 2 y mũ 2 z
tìm x,y,z thuộc Q biết :
a)x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35
b)(c+2) mũ 2+(y-3) mũ 4 +(z-5) mũ 6 =0
Tìm x,y,z biết :
x/3=y/4=z/2 và x mũ 3 - y mũ 3 + z mũ 3 = - 29
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
Theo đầu bài ra ta có :
x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29
áp dụng tc dãy tỉ số = nhau nên ta có :
x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1
x/3=1 => x=3
y/4=1=>x=4
x/2=1=>x=2
vậy x=3 ; y=4 ;z=2
Tìm x , y thuộc Z biết :
( 3 mũ x+1 + 3 mũ x ) : 2 = 18
( x +3 ) mũ 2 + ( y - 15 ) mũ 2 = 0
a) (3x+1 + 3x) : 2 = 18
3x.(3+1) = 36
3x = 9 = 32
=> x= 2
b) (x+3)2 + (y-5)2 = 0
mà \(\left(x+3\right)^2\ge0;\left(y-5\right)^2\ge0.\)
=> x = - 3; y = 5
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Bài 4
a) Tính giá trị của biểu thức A biết rằng x+y+1=0
A=x mũ 2(x+y) -y mũ 2(x+y) +x mũ 2-y mũ 2+2(x+y) +3
b) Cho xyz =2 và x+y+z =0
Tính giá trị của biểu thức B=(x+y) (y+z) (x+z)
b) Có x+y+z=0 => \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
=> B = \(-xyz\) = -2
a) Có x + y + 1 =0 => x + y = -1
\(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
= \(\left(x+y\right)\left(x^2-y^2\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
= \(\left(x+y\right)^2\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
Thay x + y = -1, ta có:
A = x - y - x + y - 2 + 3
= 1
1 + 2xy - x mũ 2 - y mũ 2
a mũ 2 + b mũ 2 - c mũ 2 - d mũ 2 - 2ab + 2cd
a mũ 3 b mũ 3 - 1
x mũ 2 ( y - z) + y mũ 2 ( z - x ) + z mũ 2 ( x - y)
1 + 2xy - x2 - y2
= 1 - ( x2 - 2xy + y2 )
= 12 - ( x - y )2
= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]
= ( y - x + 1 )( x - y + 1 )
a2 + b2 - c2 - d2 - 2ab + 2cd
= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a - b )2 - ( c - d )2
= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]
= ( a - b - c + d )( a - b + c - d )
a3b3 - 1
= ( ab )3 - 13
= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]
= ( ab - 1 )( a2b2 + ab + 1 )
x2( y - z ) + y2( z - x ) + z2( x - y )
= z2( x - y ) + x2y - x2z + y2z + y2x
= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )
= z2( x - y ) + xy( x - y ) - z( x2 - y2 )
= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )
= ( x - y )[ z2 + xy - z( x + y ) ]
= ( x - y )( z2 + xy - zx - zy )
= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]
= ( x - y )[ z( z - x ) - y( z - x ) ]
= ( x - y )( z - x )( z - y )