Những câu hỏi liên quan
27
Xem chi tiết
27
3 tháng 10 2021 lúc 21:37
Help me gấp lắm
Bình luận (0)
 Khách vãng lai đã xóa
ND
3 tháng 10 2021 lúc 21:45

1 chia 2 bằng bao nhiêu các bạn chỉ giúp mình với

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NN
29 tháng 2 2020 lúc 21:38

a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)

Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)

Em làm tương tự với câu b, không hiểu gì thì hỏi anh

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
18 tháng 3 2023 lúc 21:14

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe

Bình luận (0)
AB
18 tháng 3 2023 lúc 21:20

Theo đầu bài ra ta có :

x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29

áp dụng tc dãy tỉ số = nhau nên ta có :

x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1

x/3=1 => x=3

y/4=1=>x=4

x/2=1=>x=2

vậy x=3 ; y=4 ;z=2

Bình luận (0)
DN
Xem chi tiết
IY
4 tháng 2 2019 lúc 13:36

a) (3x+1 + 3x) : 2 = 18

3x.(3+1) = 36

3x = 9 = 32

=> x= 2

b) (x+3)2 + (y-5)2 = 0

mà \(\left(x+3\right)^2\ge0;\left(y-5\right)^2\ge0.\)

=> x = - 3; y = 5

Bình luận (0)
Xem chi tiết

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 17:57

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 18:06

2. \(A=\left(x-2\right)^2+|y+3|+7\)

Ta có :

\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)

\(\Rightarrow A\ge7\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
DY
Xem chi tiết
H24
24 tháng 5 2020 lúc 14:38

b) Có x+y+z=0 => \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

=> B = \(-xyz\) = -2

a) Có x + y + 1 =0 => x + y = -1

\(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

= \(\left(x+y\right)\left(x^2-y^2\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)

= \(\left(x+y\right)^2\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)

Thay x + y = -1, ta có:

A = x - y - x + y - 2 + 3

= 1

Bình luận (0)
NA
Xem chi tiết
LD
17 tháng 9 2020 lúc 16:43

1 + 2xy - x2 - y2

= 1 - ( x2 - 2xy + y2 )

= 12 - ( x - y )2

= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]

= ( y - x + 1 )( x - y + 1 )

a2 + b2 - c2 - d2 - 2ab + 2cd

= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )

= ( a - b )2 - ( c - d )2

= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]

= ( a - b - c + d )( a - b + c - d )

a3b3 - 1

= ( ab )3 - 13

= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]

= ( ab - 1 )( a2b2 + ab + 1 )

x2( y - z ) + y2( z - x ) + z2( x - y )

= z2( x - y ) + x2y - x2z + y2z + y2x

= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )

= z2( x - y ) + xy( x - y ) - z( x2 - y2 )

= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )

= ( x - y )[ z2 + xy - z( x + y ) ]

= ( x - y )( z2 + xy - zx - zy )

= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]

= ( x - y )[ z( z - x ) - y( z - x ) ]

= ( x - y )( z - x )( z - y )

Bình luận (0)
 Khách vãng lai đã xóa