Những câu hỏi liên quan
HV
Xem chi tiết
PS
Xem chi tiết
HP
15 tháng 5 2016 lúc 21:26

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

Bình luận (0)
.
Xem chi tiết
TT
11 tháng 8 2020 lúc 15:33

tách bất đẳng thức trên ta có \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)gọi biều thức này là A

ta có \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A>20.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+40.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)nhân vế trái vs 20 vế phải 40

\(\Rightarrow A>20.\left(\frac{1}{20}-\frac{1}{40}\right)+40.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A>\frac{5}{6}>\frac{11}{5}\left(1\right)\)

ta có \(A< 40.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+60.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A< 40.\left(\frac{1}{20}-\frac{1}{40}\right)+60.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A< \frac{3}{2}\left(2\right)\)

từ (1) và (2)

\(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\)

\(\Rightarrow\frac{11}{15}< \text{​​}\text{​​}\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+..+\frac{1}{60}< \frac{3}{2}\)(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 8 2020 lúc 15:41

Đáp án là mình chứng minh được.

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
PD
3 tháng 4 2016 lúc 17:53

gọi A=1/21+1/22+1/23+...+1/40

chia A thành 2 nhóm A1 và A2( A1+A2=A)

ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A1>10/30=1/3(1)

ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)

A2>10/40=1/4(2)

từ (1)và (2) suy ra

A1+A2>1/3+1/4

A>7/12(3)

ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)

A1<10/20=1/2(4)

ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A2<10/30=1/3(5)

từ (4)và (5) suy ra

A1+A2<1/2+1/3

A<5/6(6)

từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6

Bình luận (0)
PD
3 tháng 4 2016 lúc 17:55

cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé

Bình luận (0)
VD
Xem chi tiết
DH
3 tháng 6 2018 lúc 8:22

Đặt \(C=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{60}=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{21}>\frac{1}{40};\frac{1}{22}>\frac{1}{40};....\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+....+\frac{1}{39}+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\) 

\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...\frac{1}{59}>\frac{1}{60}\)

 \(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{60}.20=\frac{1}{3}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}>\frac{11}{15}\)

Vậy \(C>\frac{11}{15}\) (1)

Lại có: \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...\frac{1}{40}< \frac{1}{20}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}+....+\frac{1}{20}=\frac{1}{20}.20=1\)

\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...\frac{1}{60}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{1}{2}+1=\frac{3}{2}\)

Vậy \(C< \frac{3}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{3}{2}\)

Bình luận (0)
VD
Xem chi tiết
H24
Xem chi tiết
H24
21 tháng 4 2019 lúc 21:26

Y Ribi Nkok Ngok Lê Nguyễn Ngọc Nhi Lê Anh Duy Nguyễn Thị Diễm Quỳnh trần thị diệu linh kudo shinichi Nguyen Giang Thủy Tiên Nguyễn Việt Lâm

Bình luận (13)
NP
Xem chi tiết
LH
9 tháng 5 2015 lúc 13:49

So so hang trong day la:

(50-21) : 1 + 1 = 30

Gia su = 1/50 het thi tong la:

30 x 1/50 = 3/5

Vi 1/50 la so nho nhat nen tong se lon hon 3/5

Gia su tat ca deu la 1/21

Tong la:

1/21 x 30 = 30/21 = 10/7

So sanh 10/7 va 3/2, ta thay 3/2 lon hon 10/7 la 1/14 don vi

Vi 1/21 la so lon nhat nen tong se be hon 3/2

 

 

Bình luận (0)
PM
11 tháng 3 2017 lúc 16:14

ta có:A= 1/21 + 1/22 + ... + 1/50 > 1/50 +1/50 +...+1/50=1/50 x 30 = 3/5

=> A > 3/5

lại có: A = 1/21 + 1/22 + ... + 1/50 < 1/20 + 1/20  + ... +1/20= 1/20 x 30 = 3/2

=> A <3/2

cách này là cách nhanh nhất

Bình luận (0)
LN
Xem chi tiết
NT
11 tháng 6 2018 lúc 8:54

S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\)  ( có 181 phân số )

=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)

=> S > \(\frac{1}{200}.181\)

=> S > \(\frac{181}{200}\)\(\frac{180}{200}\)\(\frac{9}{10}\)

Vậy S > 9 / 10

Bình luận (0)
LN
11 tháng 6 2018 lúc 8:49

GIÚP NHA , AI LÀM ĐƯƠC 1 NGÀY TK 3TK

Bình luận (0)
H24
11 tháng 6 2018 lúc 9:17

S = \(\frac{1}{20}\)\(\frac{1}{21}\)+ ....+\(\frac{1}{200}\)có 181 p/s

mà \(\frac{1}{20}\)>\(\frac{1}{200}\)

.............

    \(\frac{1}{199}\)>\(\frac{1}{200}\)

    \(\frac{1}{200}\)=\(\frac{1}{200}\)

nên  ta có     S > \(\frac{1}{200}\)\(\frac{1}{200}\)+..... có 181 phân số \(\frac{1}{200}\)

vậy \(\frac{1}{200}\)*181=\(\frac{181}{200}\)mà \(\frac{181}{200}\)>\(\frac{9}{10}\)mà \(\frac{1}{20}\)+......+\(\frac{1}{200}\)(có 181 số)>\(\frac{1}{200}\)+\(\frac{1}{200}\)(có 181 p/s \(\frac{1}{200}\))>\(\frac{9}{10}\)

Vậy ==> S>\(\frac{9}{10}\)

Bình luận (0)