Tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia 9 dư 2 và chia 13 dư 5
Tìm số tự nhiên nhỏ nhất có 3 chữ số biết số đó chia 9 dư 2, chia 13 dư 5
Tim số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia 9 dư 2; chia 13 dư 5
tìm số tự nhiên biết số đó chia cho 12, 18, 21 đều dư 5 biết rằng số đó xấp sỉ 1000
BT2 tìm số tự nhiên A nhỏ nhất có 3 chữ số sao cho A chia 11 dư 5, A chia 13 dư 8
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
B1: tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho a chia cho 11 dư 5, chia cho 13 dư 8
B2: tìm số tự nhiên a nhỏ nhất biết rằng khi chia số a cho 29 dư 5 và chia cho 31 dư 28
Tìm số tự nhiên nhỏ nhất có 3 chữ số , biết rằng a chia cho 11 dư 3 và chia cho 13 dư 5
Gọi số tự nhiên nhỏ nhất cần tìm là : a (a \(\in\) N và a là số tự nhiên nhỏ nhất có 3 chữ số)
Vì khi chia a cho 11; 13 đều đc số dư lần lượt là 3; 5 => a + 8 chia hết cho 11; 13
=> a + 8 \(\in\) BC(11;13)
=> Ta có: 11 = 11
13 = 13
=> BCNN(11;13) = 11.13 = 143
=> BC(11;13) = B(143) = {0;143;286;429;572;715;......}
=> a + 8 \(\in\) B(143)
=> a \(\in\) {-8;135;278;421;564;707;.....}
Mà a \(\in\) BC(11;13) và a là số tự nhiên nhỏ nhẩ có 3 chữ số nên
a = 135
Vậy số tự nhiên nhỏ nhất có 3 chữ số cần tìm là: 135.
1 , Tìm số tự nhiên nhỏ nhất , biết rằng : số đó chia cho 8 dư 6 , chia cho 12 dư 10 , chia cho 15 dư 13 và chia hết cho 23.
2 , Tìm số tự nhiên lớn nhất có 3 chữ số , sao cho chia nó cho 2 ;3 ;4 ; 5 ; 6 ta được dư lần lượt là 1 ; 2; 3; 4 ; 5 .
Tìm số tự nhiên nhỏ nhất có 3 chữ số biết số đó chia cho 11 dư 5 và chia 13 dư 8 .
Tìm số tự nhiên nhỏ nhất có 3 chữ số,biết rằng số đó khi chia cho 11 thì dư 5,khi chia cho 13 thì dư 8.
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
Tìm số tự nhiên a nhỏ nhất có ba chữ số. Biết rằng a chia cho 11 dư 3 và a chia cho 13 dư 5
Gọi số cần tìm là a thì a+8 ∈ BC(11;13) và a là số nhỏ nhất thỏa mãn 100≤a≤999
Ta có BCNN(11;13) = 11.13 = 143
BC(11;13) ∈ {0;143;286;...}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên a+8 = 143
a = 135
Vậy số cần tìm là 135