Những câu hỏi liên quan
TV
Xem chi tiết
DH
26 tháng 12 2018 lúc 20:12

Cậu thậc thú zị :v

Bình luận (0)

một câu hỏi rất đáng khen ,.. very good!

Bình luận (0)
NV
26 tháng 12 2018 lúc 20:16

Thiên tài toán học đây rồi

Bình luận (0)
HH
Xem chi tiết
PH
Xem chi tiết
MV
14 tháng 7 2018 lúc 8:02

\(1)C=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\)

\(3C=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\)

\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\right)\)

\(2C=1-\dfrac{1}{162}\)

\(2C=\dfrac{161}{162}\)

\(C=\dfrac{161}{162}.\dfrac{1}{2}\)

\(C=\dfrac{161}{324}\)

\(2)A=\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\right)\)

\(A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

Bình luận (0)
PT
Xem chi tiết
PG
Xem chi tiết
PG
23 tháng 2 2019 lúc 9:41

Ai bít trả lời giúp mình với nha

Bình luận (0)
TD
Xem chi tiết
Y
6 tháng 8 2019 lúc 13:27

Mk nghĩ đề như này ms đúng : \(\frac{1+cosx}{1-cosx}-\frac{1-cosx}{1+cosx}=\frac{4cotx}{sinx}\)

\(VT=\frac{\left(1+cosx\right)^2-\left(1-cosx\right)^2}{1-cos^2x}=\frac{\left(1+2cosx+cos^2x\right)-\left(1-2cosx+cos^2x\right)}{sin^2x}\)

\(=\frac{4cosx}{sin^2x}=\frac{\frac{4cosx}{sinx}}{sinx}=\frac{4cotx}{sinx}\)

Bình luận (0)
H24
Xem chi tiết
KN
13 tháng 1 2019 lúc 11:18

                                 Giải

\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b\left(b+1\right)}=\frac{1}{b\left(b+1\right)}< \frac{1}{b.b}=\frac{1}{b^2}\)

Vậy \(\frac{1}{b^2}>\frac{1}{b}-\frac{1}{b+1}\)                                                  ( 1 )

\(\frac{1}{b-1}-\frac{1}{b}=\frac{b-b+1}{b\left(b-1\right)}=\frac{1}{b\left(b-1\right)}>\frac{1}{b.b}=\frac{1}{b^2}\)

Vậy \(\frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\)                                                ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\left(đpcm\right)\)

Bình luận (0)
DH
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết