tìm hai số tự nhien a,b>0 biết U7CLN(a,b)=16.
1.Tìm số tự nhiên a biết rằng 105 chia a dư 16 , 72 chia a dư 12
2. Tìm số tự nhiên a và b ( a>b ) biết a+b =270 và U7CLN ( a,b)=45
Tìm các số tự nhiên a và b(a<b),biết:
a) a+b=96 và U7CLN(a,b)=7
b)ab=294 và U7CLN(a,b)=7
1) Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
2) Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
3) Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
em thấy cj Trà My lm đúng á
Tìm 2 số tự nhien a,b(a>b) biết rằng a+b=128 và UCLN(a,b)=16
đặt a=16n b=16m mà ƯCLN(n;m)=1
ta có a+b=16n+16m=16(n+m)=128
=>n+m=128:16=8 tự giải nốt nha
Cách tính số tam giác biết số đường thẳng cho trước cho VD
Bài 1 : Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, UCLN của chúng bằng 6.
Bài 2: Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
Bài 3 : Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
Bài 4 : Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
(bt 1,2,3,4 nêu tóm tắt cách giải)
Cách tính số tam giác biết số đường thẳng cho trước cho VD
Bài 1 : Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, UCLN của chúng bằng 6.
Bài 2: Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
Bài 3 : Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
Bài 4 : Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
(bt 1,2,3,4 nêu tóm tắt cách giải)
+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm
---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)
Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b
Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1
Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1
\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)
---> Nhân 6 hết lên là ra kết quả cuối cùng.
Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1
Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)
\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong
Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1
\(\Rightarrow6x.6y=216\Rightarrow xy=6\)
\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha
Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)
Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.
\(\Rightarrow3x.3y=180\Rightarrow xy=20\)
\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!
Thanks !!!!!!!!!!
Bài : Tìm hai số tự nhiên a,b > 0 , biết ( a, b) = 240 và (a,b) = 16
Bn dùng sai dấu rùi nha, phải là [a,b] = 240
Do (a,b) = 16 => a = 16.a'; b = 16.b' (a',b')=1
=> [a,b] = 16.a'.b' = 240
=> a'.b' = 240 : 16 = 15
Giả sử a > b => a' > b' mà (a',b')=1 => a' = 15; b' = 1 hoặc a' = 5; b' = 3
+ Với a' = 15; b' = 1 => a = 240; b = 16
+ Với a' = 5; b' = 3 => a = 80; b = 48
Vậy a = 240; b = 16 hoặc a = 80; b = 48
Chú ý: (a,b) là viết tắt của ƯCLN(a,b) ; [a,b] là viết tắt của BCNN(a,b)
Ủng hộ mk nha ^_-
Do (a,b) = 16 => a = 16.a' b = 16.b' (a',b')=1
=> [a,b] = 16.a'.b' = 240
=> a'.b' = 240 : 16 = 15
Giả sử a > b => a' > b' mà (a',b')=1 => a' = 15; b' = 1 hoặc a' = 5; b' = 3
+ Với a' = 15; b' = 1 => a = 240; b = 16
+ Với a' = 5; b' = 3 => a = 80; b = 48
Vậy a = 240; b = 16 hoặc a = 80; b = 48
Chú ý: (a,b) là viết tắt của ƯCLN(a,b) ; [a,b] là viết tắt của BCNN(a,b)
Bài 1: Có số tự nhiên nào mà (4 + n).(7 + n) = 11 không?
Bài 2: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho 6,7,9 được dư lần lượt là 2,3,5
Bài 3: Tìm số tự nhiên a và b (a < b).
Biết U7CLN (a,b) = 6 và BCNN ( a,b) = 60.
Không có số tự nhiên nào thõa mãn điều kiện trên : Vì
\(\left(4+n\right)\ge4;\left(7+n\right)\ge7\)
\(\Leftrightarrow\left(4+n\right).\left(7+n\right)\ge\left(4.7\right).n=28.n>11\)
U7CLN(a,ab + 4) biết a,b là các số tự nhiên và a là số lẻ