chứng minh nếu abc chia hết cho 37 thì cba chia hết cho 37 và bca chia hết cho 37
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng: Nếu abc chia hết cho 37 thì bca và cab đều chia hết cho 37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
Chúc bạn học tốt
Nếu abc chia hết cho 37 thì hãy chứng minh bca và cab cũng chia hết cho 37
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
abc ⋮ 37
=> abc x 10 ⋮ 37
=> ( 100a + 10b + c) .10 ⋮ 37
=> 1000a+100b+10c ⋮37
=> 999a + ( 100b+10c+a)⋮37
=> 37.(27a) + bca ⋮ 37
Mà 37(27a)⋮37 nên bca chia hết cho 37.
bca ⋮ 37 nên bca.10⋮37
=> ( 100b + 10c + a ) .10 ⋮37
=> 1000b + 100c +10a ⋮37
=> 999b +(100c+10a+b)⋮37
=> 37(27b) + cab ⋮ 37
Mà 37 . (27b)⋮37 nên cab ⋮ 37
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
Chứng minh rằng: nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37 ?
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
chứng minh abc chia hết cho 37 thì bca và cab đều chia hết cho 37
vào câu hỏi của Ngân sally bạn ấy có cậu hỏi giống bạn
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\Leftrightarrow\)abc có gạch trên đầu
\(10\left(26a+10b+c\right)⋮37\Leftrightarrow260a+100b+10c⋮37\Leftrightarrow a+100b+10c⋮37\)
\(\Leftrightarrow\)bca \(⋮37\)(1)
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\)abc có gạch trên đầu
\(\Leftrightarrow100\left(26a+10b+c\right)⋮37\Leftrightarrow2600a+1000b+100c⋮37\)
\(\Leftrightarrow10a+b+100c⋮37\Leftrightarrow\)cab \(⋮37\)(2)
Từ (1) và (2) =>abc \(⋮37\)thì bca và cab \(⋮37\)
chứng tỏ rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37
Tham khảo câu hỏi tương tự nha bạn
CHÚC BẠN HỌC TỐT NHA !
CMR nếu abc chia hết cho 37 thì bca chia hết cho 37 và cab chia hết cho 37
*abc, bca,cab có dấu gạch trên đầu
Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a
Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37 (1)
Mà abc chia hết cho 37 nên 10.abc chia hết cho 37 (2)
Từ (1) và (2) => bca chia hết cho 37
100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b
=cab +999(10a+b)=cab +37.27ab
Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37 (3)
Mà abc chia hết cho 37 nên 100abc chia hết cho 37 (4)
Từ (3) và (4)=> cab chia hết cho 37
Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
Nhớ **** cho mình nhé
Chứng minh rằng : mếu abc chia hết cho 37 thì bca và cab đều chia hết cho 37
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
chứng minh : abc chia hết cho 37 thì bca và cab đều chia hết cho 37
hi câu hỏi tương tự đó bn na
L I K E mk cái nha mk rất cần Vân Anh à
CMR : Nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
Chúc bạn học tốt
Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a
Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37 (1)
Mà abc chia hết cho 37 nên 10.abc chia hết cho 37 (2)
Từ (1) và (2) => bca chia hết cho 37
100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b
=cab +999(10a+b)=cab +37.27ab
Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37 (3)
Mà abc chia hết cho 37 nên 100abc chia hết cho 37 (4)
Từ (3) và (4)=> cab chia hết cho 37
Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37