Những câu hỏi liên quan
PH
Xem chi tiết

Chứng minh bằng phản chứng : Giả sử có hữu hạn số nguyên tố, do đó ta có thể sắp xết các số này thành dãy : p1<p2<p3<...<pnp1<p2<p3<...<pn

Xét số p=p1.p2.p3...pn+1p=p1.p2.p3...pn+1 . Vì p>pnp>pn nên p không thể là số nguyên tố. Vậy p là bội số của một số nguyên tố pkpk nào đó, suy ra : 1=p−p1.p2...pk⇒1⋮pk⇒pk≤11=p−p1.p2...pk⇒1⋮pk⇒pk≤1 (vô lý)

Vậy có vô hạn số nguyên tố.

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 10 2021 lúc 7:44

ta có : Ư(a) = {1 ; a)

B(a) = a . P

P = {x E N | x = 2 ; 3 : 4 ; ...}

vậy a = {a E N | a \(⋮\)a và 1 ; a khác 0 và 1}

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
NM
20 tháng 1 2016 lúc 10:50

Thực ra mk biết rùi, bạn nào trả lời đúng và tick minh mình sẽ tick lại

Bình luận (0)
H24
Xem chi tiết
LP
16 tháng 9 2023 lúc 21:00

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

Bình luận (0)
H24
Xem chi tiết
AH
16 tháng 9 2023 lúc 23:21

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

Bình luận (0)
NA
Xem chi tiết
CT
Xem chi tiết
KG
17 tháng 2 2021 lúc 21:40

Lười đánh máy:((

P là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 

=> p có dang 3k+1 hoặc p=3k+2

+Nếu p=3k+1 => (p+5)(p+7)=(3k+1+5)(3k+1+7)=(3k+6)(3k+1+7)=3(k+2)(3k+8) chia hết cho 3

+Nếu p=3k+2 => (p+5)(p+7)=(3k+2+5)(3k+2+7)=3(3k+8)(k+3) chia hết cho 3

=> (p+5)(p+7) chia hết cho 3 (1)

Lại có p là số nguyên tố lớn hơn 3 => p lẻ

=>p+5; p+7 là 2 số chắn liên tiếp

=> (p+5)(p+7) chia hết cho 8 (2) 

Từ (1) và (2) suy ra (p+5)(p+7) chia hết cho 24 khi p lớn hơn 3 (vì (3;8)=1)

Đánh chữ với số thôi chứ lười đánh công thức lắm :vvv

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PK
20 tháng 5 2016 lúc 14:56

1+2+3=6 ma 6 khong phai la so nguyen to va 6>3

Bình luận (0)
GQ
Xem chi tiết
NN
Xem chi tiết