Những câu hỏi liên quan
TB
Xem chi tiết
TN
18 tháng 5 2016 lúc 22:18

vì |x-2010|\(\ge\)0

(y+2011) 2010\(\ge\)0

=>|x-2010|+(y+2011) 2010\(\ge\)0

=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011

dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0

<=>x=2010 và y=-2011

vậy Amin=2011 khi x=2010 và y=-2011

Bình luận (0)
GG
Xem chi tiết
ZZ
11 tháng 2 2019 lúc 21:03

Bài ni t mần cho phát chán nó  rồi:))

Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)

Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương

Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)

Bình luận (1)
ZZ
12 tháng 8 2019 lúc 16:53

Làm lại nha.sơ suất quá:((

Ta có:

\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(x+y\right)-xy\left(x^{2010}+y^{201}\right)\left(1\right)\)

Mặt khác:\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\left(2\right)\)

Từ (1);(2) suy ra:

\(x^{2010}+y^{2010}=\left(x^{2010}+y^{2010}\right)\left(x+y\right)-xy\left(x^{2010}+y^{2010}\right)\)

\(=\left(x^{2010}+y^{2010}\right)\left(x+y-xy\right)\)

\(\Rightarrow x+y-xy=1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow1+x^{2010}=1+x^{2011}=1+x^{2012}\Rightarrow x=1\end{cases}}\)

Thay vào ta được \(A=3\)

Vậy A=3

Bình luận (0)
HV
Xem chi tiết
PO
6 tháng 11 2016 lúc 7:22

dễ ợt 2008

Bình luận (0)
TD
1 tháng 4 2018 lúc 8:21

giải đi chứ

Bình luận (0)
AD
Xem chi tiết
LB
25 tháng 3 2017 lúc 18:54

2011 nha bạn

Bình luận (0)
AD
25 tháng 3 2017 lúc 19:19

cách làm cơ

Bình luận (0)
AD
26 tháng 3 2017 lúc 20:46

2012 mới đúng .ko bít cánh làm.!!

Bình luận (0)
H24
Xem chi tiết
LB
Xem chi tiết
KN
8 tháng 8 2019 lúc 9:28

\(Q=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)

Ta có:\(\hept{\begin{cases}\left|x-2010\right|\ge0\\\left(y+2011\right)^{2010}\ge0\end{cases}}\)

Nên \(\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\ge2011\)

Vậy \(Q_{min}=2011\Leftrightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

Bình luận (0)
BK
Xem chi tiết
LM
18 tháng 12 2022 lúc 14:53

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

Bình luận (0)
VG
Xem chi tiết
AH
12 tháng 6 2021 lúc 1:34

Lời giải:
Để $M$ nhỏ nhất thì $2011-6033:(x-2010)$ nhỏ nhất. Giá trị này chính bằng $0$

Khi đó: 

$2011-6033:(x-2010)=0$

$x-2011=6033:2011=3$

$x=2014$

$M=\frac{2011-2011}{2009\times 2010\times 2013}=0$

 

Bình luận (0)
NL
Xem chi tiết