Tìm 2 số có tổng là 150 và ước chung lớn nhất là 30
a)Tìm ước chung lớn nhất của ( ab+ba ) và 55
b) Tổng của 30 số tự nhiên liên tiếp bằng 1994. Giả sử ước chung lớn nhất của 30 số đó là d. Tìm giá trị lớn nhất của d
bài 1) tìm 2 số tự nhiên biết rằng tổng của chung là 66, ước chung lớn nhất của chúng là 6, đồng thời có 1 số chia hết cho 5
bài 2) tìm 2 số tự nhiên biết hiệu của chúng bằng là 84 và ước chung lớn nhất của chúng là 12
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Đính chính câu 2 \(a-b=84\) không phải \(a-b=66\)
1: Tìm 2 số tự nhiên biết tổng của chúng là 144 và ước chung lớn nhất bằng 8 ?
2: Tìm 2 số tự nhiên biết tích của chúng là 1286 và ước chung lớn nhất bằng 9 ?
Tìm 2 số tự nhiên biết tổng của bội chung nhỏ nhất và ước chung lớn nhất là 15.
Tìm 2 số tự nhiên lớn hơn 500 có tổng bằng 2005 và ước chung lớn nhất bằng 401.Vậy số bé, số lớn là
số bé là 802
số lớn là 1203
quá dễ, cứ dùng máy tính là được
Tìm hai số tự nhiên có hiệu là số dương nhỏ nhất có thể sao cho ước chung lớn nhất và bội chung nhỏ nhất của chúng có tổng là 126.
câu trả lời là mới hok lp 5 sang năm lên lp 6 :)
Gọi 2 số đó là a và b, ƯCLN(a,b)=d
=>a=da'
b=db'
(a',b')=1
BCNN(a,b)=da'b'
Tổng ƯCLN và BCNN là d+da'b'=d(a'b'+1)=126
126 phân tích ra thừa số nguyên tố là 2.32.7
Do đó d=2 hoặc a'b'+1=2
Nếu d=2 thì a'b'+1=126:2=63
a'b'=62. Giả sử a>b thì a'>b'
TH1: a'=31, b'=2 =>a=31.2=62, b=2.2=4. a-b=58
TH2 a'=62, b'=1 =>a=62.2=124, b=2. a-b=122.
Hiệu nhỏ nhất nếu d=2 là 58
Tiếp theo ta xét
a'b'+1=2
a'b=1
=>a'=b'=1
Khi đó d=126:2=63
Ta có a=63, b=63
a-b=0
Tuy nhiên đề bài yêu cầu tìm hiệu dương mà số 0 ko dương cũng ko âm
Vậy 2 số cần tìm là 62 và 4
Hình như mình làm sai. Đợi mình nghĩ lại nha
tìm hai số tự nhiên biết chúng có tổng là -7,ước chung lớn nhất là 3 và bội chung nhỏ nhất của chúng là 60
ghjkllkjhjkl;lkjhgjklkjhgglkjhgk;lkjhglkjhgfbnmlkjhgfdfghjkoiuy654wsxcvbnml[p098765rdcvbnklp098765rfvbnm,;ơp09876t5rdcvbnmklo987yt
4j48hnh4y5j4h84y5484hu5j8rm74srky448dj48jd48dtju44tku8m4m48mu48t4m48mhhmm64nbdmi fkcmnhkymkutj65.5kl62.26khv62k62,y62m2du525y5yk55ky65ku5d1tm5151uy51yy51f1u51fyu51u,ỳ,yu51ufy,4141,iyu,4141,yu41ymm441mu41uymu41ymu41m41m4141ymu41mu41mu41mm151mm151mu15ymu1muy41myu41myu41muy41ymu41ymu4ymuym4hyusejkhl;kợpbowighhfjkmeslgrdthflhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhllllllllllllllllkbn zdgoknmz 2nxf41fxnh651hf651fhm651fm651fhm651fhm651hm5166fhm651f51fhm61gjm51jmg51,kc51jc,g51jm51
mx51
jy565'liuytrefghjklkjuytrfghjkl;'lkijuhygyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyytttttttttttttttttttttttttttrewdfghjkl;ưlkjuytreaasdfghjkl;'77]ôpiuytrfghjkl;lkjhgfdszxcvbhnjklkjhgfdscvbnjkl;lkjhgf lkjhgvbnmk,l.;l,kmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn jnjjjjjjjjjjjjj hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 8596859685296850968351525122162983465154545456591346195094846846598455461953561845579463177649163466598288188499
tìm 2 số tự nhiên biết tổng chúng là 162 và Ước chung lớn nhất của chung là 18
Gọi hai số tự nhiên cần tìm lần lượt là a và b ( ĐK a,b thuộc N )
Vì tổng của chúng là 162 nên a + b = 162
Vì ƯCLN(a,b) = 18 nên a = x.18 ; b = y.18 ( ĐK x,y thuộc N sao )
Thay a =x.18 ; b = y.18 vào a + b = 162 ta được:
x.18 + y.18 = 162
18.( x + y ) = 162
x + y = 162 : 18 = 9
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
y | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
a | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | |
b | 144 | 126 | 108 | 90 | 72 | 54 | 36 | 18 |
Vậy: .........
Nhớ k cho mình nhé! Thank you!!!
Tìm 2 số tự nhiên biết :
a) Bội chung nhỏ nhất của chúng là 300 và ước chung là lớn nhất của chúng là 15.
b) Tích của chúng là 2940 và bội chung nhỏ nhất của chúng là 210.
c) Tổng của bội chung nhỏ nhất và ước chung lớn nhất của chúng là 15.
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....