Giải hệ đẳng cấp: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải hệ:\(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải hệ phương trình sau:
\(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải hệ phương trình:
a) \(\hept{\begin{cases}x^4+y^4=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2+y^2\right)\left(x^2-y^2\right)=144\\\sqrt{x^2+y^2}-\sqrt{x^2-y^2}=y\end{cases}}\)
c) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)
Giải hệ đẳng cấp: \(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2y\right)=\frac{-5}{4}\end{cases}}\)
Giải hệ phương trình:\(\hept{\begin{cases}x^2y^2-1=7x+7y\\x+y=xy-1\\\end{cases}}\)
\(\hept{\begin{cases}x^2y^2-1=7x+7y\\xy-1=x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2y^2-1=7x+7y\\7xy-7=7x+7y\end{cases}}\)
\(\Rightarrow x^2y^2-1-7xy+7=0\Leftrightarrow x^2y^2-7xy+6=0\)
\(\Leftrightarrow x^2y^2-xy-6xy+6=0\Leftrightarrow xy\left(xy-1\right)-6\left(xy-1\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left(xy-6\right)=0\Leftrightarrow\orbr{\begin{cases}xy-1=0\\xy-6=0\end{cases}}\)
Tới đây bạn tự giải tiếp nha
Bt hè
1 ) giải các phương trình và hệ phương trình sau :
a) \(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}+7=0\)
b) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
b) \(\hept{\begin{cases}xy+x+1=7y\left(1\right)\\x^2y^2+xy+1=13y^2=1\left(2\right)\end{cases}}\)
từ (2) ta có y khác 0 do đó
hệ trở thành \(\hept{\begin{cases}x+\frac{x}{y}+\frac{1}{y}=7\\x^2+\frac{x}{y}+\frac{1}{y^2}=13\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)+\frac{x}{y}=7\\\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=13\end{cases}}}\)
đặt a=\(x+\frac{1}{y};b=\frac{x}{y}\)
hệ viết được dưới dạng \(\hept{\begin{cases}a+b=7\\a^2-b=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=17\\a^2+a-20=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-5\\b=12\end{cases}}}\)hay \(\hept{\begin{cases}a=4\\b=3\end{cases}}\)
với a=-5; b=12 ta được \(\hept{\begin{cases}x+\frac{1}{y}=5\\x\cdot\frac{1}{y}=12\end{cases}}\)
(x,\(\frac{1}{y}\)là nghiệm phương trình t2+5t+12=0, vô nghiệm)
với a=4, b=3 ta được \(\hept{\begin{cases}x+\frac{1}{y}=4\\x\cdot\frac{1}{y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)hoặc \(\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
vậy hệ đã cho 2 nghiệm (x;y)=(3;1);(\(\left(1;\frac{1}{3}\right)\)
a) điều kiện x\(\ne\)1 phương trình đã cho
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\frac{x^2}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-1=-8\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^3+\frac{3x^2}{x-1}-1=\left(-2\right)^3\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3=\left(-2\right)^3\Leftrightarrow\frac{x^2}{x-1}=-2\)
\(\Leftrightarrow\frac{x^2}{x-1}+1=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)(thỏa mãn)
vậy x=\(\frac{1\pm\sqrt{5}}{2}\)là nghiệm của phương trình
TOÁN LỚP 1 ĐÂY SAO?
CÓ THỂ LÀ LỚP 1 >3 HA