Những câu hỏi liên quan
NT
Xem chi tiết
TM
20 tháng 8 2017 lúc 11:41

Tử số = \(1.2.4+2.3.5+3.4.6+...+100.101.103\)

\(=1.2.\left(3+1\right)+2.3.\left(4+1\right)+3.4.\left(5+1\right)+...+100.101.\left(102+1\right)\)

\(=1.2.3+1.2+2.3.4+2.3+3.4.5+3.4+...+100.101.102+100.101\)

\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)+\left(1.2+2.3+3.4+...+100.101\right)\)

Mẫu số = \(1.2^2+2.3^2+3.4^2+...+100.101^2\)

\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+100.101.\left(102-1\right)\)

\(=1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+...+100.101.102-100.101\)

\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)-\left(1.2+2.3+3.4+...+100.101\right)\)

đặt \(A=1.2.3+2.3.4+3.4.5+...+100.101.102\) và \(B=1.2+2.3+3.4+...+100.101\)

bạn tự tính : \(A=\frac{100.101.102.103}{4}=25.101.102.103\)\(B=\frac{100.101.102}{3}=100.101.34\)

rồi thay vào tìm P=\(\frac{A+B}{A-B}\)

Bình luận (0)
TL
Xem chi tiết
PA
Xem chi tiết
CG
3 tháng 5 2018 lúc 17:42

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)

\(=\frac{1.1}{1.101}\)

\(=\frac{1}{101}\)

Bình luận (0)
WH
3 tháng 5 2018 lúc 17:42

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)

\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)

\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)

\(=\frac{1}{101}\)

Bình luận (0)
LU
3 tháng 5 2018 lúc 17:44

(de bai)=\(\frac{1^2.2^2.3^2...100^2}{1.2.2.3.3.4...100.101}\)

=\(\frac{1.1.2.2.3.3.4...100.100}{1.2.2.3.3.4...100.101}\)=\(\frac{1}{101}\)

Bình luận (0)
H24
Xem chi tiết

\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)

\(=\frac{1}{1.101}\)

\(=\frac{1}{101}\)

k cho mk nha

Bình luận (0)
H24
Xem chi tiết
PT
11 tháng 5 2015 lúc 14:52

=2(1/1.2+1/2.3+...+1/100.101)

=2(1/1-1/2+1/2-...+1/100-1/101)

=2(1-1/101)

=2.100/101

=200/101

Bình luận (0)
KM
11 tháng 5 2015 lúc 14:57

2/1.2+2/2.3+2/3.4+...+2/100.101

= 2(2/1.2+2/2.3+2/3.4+...+2/100.101)

= 2(1/1.2+1/2.3+1/3.4+...+1/100.101)

= 2(1/1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

= 2.(1/1-1/101)

= 2.100/101

= 200/101

Cho mình 1 đ-ú-n-g nha bạn

Bình luận (0)
LH
Xem chi tiết
NM
11 tháng 4 2017 lúc 20:46

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)

\(=1.\frac{1}{101}=\frac{1}{101}\)

Bình luận (0)
NH
11 tháng 4 2017 lúc 20:48

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)

\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)

\(=\frac{1}{101}\)

Bình luận (0)
PH
Xem chi tiết
NB
Xem chi tiết
VS
13 tháng 9 2016 lúc 16:07

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

Bình luận (0)
NC
12 tháng 10 2022 lúc 21:53

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

Bình luận (0)
PS
Xem chi tiết