Những câu hỏi liên quan
HA
Xem chi tiết
EC
1 tháng 10 2017 lúc 16:09

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

Bình luận (0)
TL
Xem chi tiết
HL
Xem chi tiết
HL
22 tháng 11 2017 lúc 22:19

giup minh voi cac ban

Bình luận (0)
H24
Xem chi tiết
LA
16 tháng 8 2016 lúc 21:07

Là a chia cho hay a là đấy

Bình luận (0)
H24
16 tháng 8 2016 lúc 21:08

la a chi cho do ban

Bình luận (0)
DN
16 tháng 8 2016 lúc 21:11

Tổng các số trong trong ngoặc là:(100+1).[(100-1):1+1]:2=5050

  a=5050:5=1010

Bình luận (0)
NA
Xem chi tiết
NA
17 tháng 2 2019 lúc 19:16

A= 51

B = 1

Bình luận (0)
TD
Xem chi tiết
XO
7 tháng 2 2021 lúc 10:32

Ta có a + b = 3

=> (a + b)2 = 9

=> a2 + 2ab + b2 = 9

=> a2 + b2 = 5 (ab = 2)

Khi a2 + b2 = 5 => a2 - 2ab + b2 = 1

=> (a - b)2 = 1

=> a - b = \(\pm1\)

Đặt A \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{\left(a.b\right)^3}=\frac{\left(b-a\right)\left(b^2+ab+a^2\right)}{\left(ab\right)^3}=-\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(ab\right)^3}\)

Với  a - b = 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{1.\left(5+2\right)}{2^3}=-\frac{7}{8}\)

Với a - b = - 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{\left(-1\right).\left(5+2\right)}{2^3}=\frac{7}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
7 tháng 2 2021 lúc 10:37

Ta có: \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\ab=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2+2ab+b^2=9\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=5\\ab=2\end{cases}}\)

Khi đó: \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{a^3b^3}=\frac{\left(b-a\right)\left(a^2+ab+b^2\right)}{8}=\frac{7\left(b-a\right)}{8}\)

Ta có: \(a+b=3\Rightarrow a=3-b\) thay vào: \(\left(3-b\right)b=2\)

\(\Leftrightarrow b^2-3b+2=0\Leftrightarrow\left(b-1\right)\left(b-2\right)=0\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=2\\b=2\Rightarrow a=1\end{cases}}\)

Nếu \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow}\frac{1}{a^3}-\frac{1}{b^3}=-\frac{7}{8}\)

Nếu \(\hept{\begin{cases}a=1\\b=2\end{cases}}\Rightarrow\frac{1}{a^3}-\frac{1}{b^3}=\frac{7}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
MU
10 tháng 9 2015 lúc 19:22

C1: \(A=\left(\frac{36}{6}-\frac{4}{6}+\frac{3}{6}\right)-\left(\frac{150}{30}+\frac{50}{30}-\frac{45}{30}\right)-\left(\frac{18}{6}-\frac{14}{6}+\frac{15}{6}\right)\)

\(=\frac{35}{6}-\frac{155}{30}-\frac{19}{6}=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=-\frac{15}{6}=-2\frac{1}{2}\)

C2: \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)

\(=\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)

\(=-2-0-\frac{1}{2}=-2\frac{1}{2}\)

Bình luận (0)