Chứng minh với mọi n thuộc N* thì \(n^3+n+2\)
là hợp số
chứng minh rằng với mọi n thuộc N* thì n^3 +n+2 là hợp số
n3 + n + 2
= n3 - n + 2n + 2
= n.(n2 - 1) + 2.(n + 1)
= n.(n - 1).(n + 1) + 2.(n + 1)
= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1
=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)
Có: n3 + n + 2 = n(n2+1) + 2
- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)
- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)
Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*
chứng minh rằng với mọi n thuộc N* thì n^3 +n+2 là hợp số
Ta có
n3 + n + 2 = (n + 1)(n2 - n + 2)
Ta thấy ( n + 1) > 1
n2 - n + 2 > 1
Vậy n3 + n + 2 luôn chia hết cho 2 số khác 1 nên nó là hợp số
1/Chứng minh với mọi n thuộc N* thì n^3+n+2 là hợp số
2/Cho hai số chính phương liên tiếp. Cm tổng của chúng cộng tích của chúng là một số chính phương lẻ
1/ n3+n+2=(n+1)(n2-n+2)
Xet chẵn lẻ của n => chia hết cho 2 => hợp số
online math oi, chọn câu trả lời này đi
chứng minh với mọi n thuộc N* thì n3 +n +2 là hợp số
( Mình cần gấp lắm, ai giải nhanh giúp mình nha)
Nếu n lẻ thì n^3 và n là số lẻ
=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1
=> n^3 + n + 2 là hợp số (1)
Nếu n chẵn thì n^3 và n là số chẵn
=> n^3 + n+2 là hợp số (2)
Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)
giúp mình câu này nhé mọi n:
1:chứng minh với mọi n thuộc N* thì n^3 +n+2 là hợp số
2: cho a^2 +b^2+c^2=a^3+b^3+c^3+1. Tính S=a^2+b^2012 +c^2013
muốn nhanh hải từ từ chứ! :D
1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.
2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.
\(<1>\) Ta có:
\(n^3+n+2=\left(n^3+1\right)+n+1=\left(n+1\right)\left(n^2-n+1\right)+n+1=\left(n+1\right)\left(n^2-n+2\right)\)
Vợi mọi \(n\in N^{\text{*}}\) thì \(n+1>0\) và \(n^2-n+2>0\)
Vậy, \(n^3+n+2\) là một hợp số.
\(<2>\) Từ giả thiết đã nêu trên, ta có:
\(a^2+b^2+c^2=a^3+b^3+c^3\) \(\left(=1\right)\)
nên \(a^3+b^3+c^3-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\) \(a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow\) \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
\(\Leftrightarrow\) \(^{a=b=c=1}_{a=b=c=0}\) (dùng dấu ngoặc vuông nhé)
Kết hợp với giả thiết, ta suy ra \(a,b,c\) nhận hai giá trị là \(0\) và \(1\)
Do đó, \(b^{2012}=b^2;\) \(c^{2013}=c^2\)
Vậy, \(S=a^2+b^{2012}+c^{2013}=a^2+b^2+c^2=1\)
Chứng minh rằng: Với mọi n thuộc tập hợp số nguyên dương, thì:
\(3^{2+n}-2^{n+2}+3^n-2^n\) Luôn chia hết cho 10
3^n+2=3^n .3^2=9.3^2
2^n+2= 2^n. 2^2= 4.2^2
=>3^n+2- 2^n+2 +3^n- 2^n=9.3^n -4.2^n +3^n -2^n
=3^n.(9+1) -2^n.(4+1)=10.3^n -2^n.5
Vì:10.3^n chia hết cho 10 (mình ko bít viết dấu chia hết)
2^n chia hết cho 2; 5 chia hết cho5; 2,5 là số nguyên tố cùng nhau,n>0
=>2^n.5 chia hết cho 10
dạy mình viết dấu chia hết đi!!!!!!!!!!!!!!!!
chứng minh với mọi n là số tự nhiên khác 0 thì n3 + n + 2 là hợp số
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Chứng minh rằng với mọi n thì n^3+n+2 là hợp số.
Đề sai nhé vì nếu n = 0 thì n3 + n + 2 = 2 là số nguyên tố nhé, n = 1 thì tổng đó = 3 cũng là số nguyên tố nhé