Những câu hỏi liên quan
H24
Xem chi tiết
TN
27 tháng 4 2021 lúc 23:20

Đặt \(a\) và \(a+1\) lần lượt là 2 thừa số của tích hai số nguyên liên tiếp(\(a\inℤ\))
Theo đề bài ta có:
\(25x+46=a\left(a+1\right)\)
\(\Leftrightarrow\left(25x+46\right)a=a^2\left(a+1\right)\)

\(\Leftrightarrow25ax+46a=a^3+a\)

\(\Leftrightarrow25ax+45a=a^3\)

\(\Leftrightarrow5a\left(x+9\right)=a^3\)

\(\Leftrightarrow5\left(x+9\right)=a^2\)

Vậy tập nghiệm \(S=\left\{x\inℤ|x=a^2\div5-9\right\}\left(a^2⋮5\right)\)

a051015
x-9-41136

Biểu diễn x trên đồ thị hàm số: \(x=3a-9\left(đk:x\inℤ,x⋮5\right)\)

P/S: Không hiểu chỗ nào cứ hỏi mình:))

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 4 2021 lúc 18:31

à ko mik lm sai r đợi chút nhé để mik lm lại

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DQ
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
LG
Xem chi tiết
L1
Xem chi tiết
L1
Xem chi tiết
H24
Xem chi tiết
AH
18 tháng 7 2023 lúc 22:52

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)

Bình luận (0)