Những câu hỏi liên quan
KR
Xem chi tiết
NP
Xem chi tiết
BT
26 tháng 11 2024 lúc 21:01

cmr : với mọi số nguyên n thì B=n2+3n+4 không chia hết cho 49 

Bình luận (0)
TN
Xem chi tiết
H24
26 tháng 2 2021 lúc 20:11

ý a bạn bt lm ko?

Bình luận (0)
 Khách vãng lai đã xóa
LK
20 tháng 12 2021 lúc 23:05

không ạ mình hỏi các bạn bài này ạ!

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
MN
22 tháng 1 2015 lúc 22:29

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

Bình luận (0)
CS
21 tháng 6 2020 lúc 21:24

ùi hơi khó thế này thì có làm đc ko

Bình luận (0)
 Khách vãng lai đã xóa
LB
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NH
27 tháng 2 2021 lúc 13:43

             2n+1:n-2

 suy ra   n+n-2+3:n-2

             n+3:n-2

             n-2+5:n-2

             5:n-2

":"  là dấu chia hết nha :3 típ nè

suy ra   n-2 thuộc Ư(5)= (ngoặc vuông) 1;5 (ngoặc vuông)

TH1: n-2 =1

         n=2+1

         n=3

TH2: n-2=5

         n=5+2

         n=7

suy ra    n thuộc (ngoặc vuông) 2,7 (ngoặc vuông)

Xong rùi nè

nhớ chọn câu trả lời của mk nha :Đ TYM TYM =))

Đảm bảo đúng 100% (9,3 đ giữa kì ó)

Bình luận (0)
 Khách vãng lai đã xóa
DH
27 tháng 2 2021 lúc 13:50

\(\left(2n+1\right)⋮\left(n-2\right)\Leftrightarrow\left[2\left(n-2\right)+5\right]⋮\left(n-2\right)\Leftrightarrow5⋮\left(n-2\right)\)

\(\Leftrightarrow n-2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-3,1,3,7\right\}\).

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
14 tháng 5 2019 lúc 5:09

Đáp án cần chọn là: D

Bình luận (0)
TT
Xem chi tiết
TA
27 tháng 1 2019 lúc 15:38

Ta có \(\hept{\begin{cases}2n+1⋮n-2\\n-2⋮n-2\end{cases}\Rightarrow\hept{\begin{cases}2n+1⋮n-2\\2n-4⋮n-2\end{cases}}}\)

\(\Rightarrow2n+1-2n+4⋮n-2\)

\(\Rightarrow5⋮n-2\)

\(\Rightarrow n-2\in\left\{1;5\right\}\)

\(\Rightarrow n\in\left\{3;7\right\}\)

Bình luận (0)
NP
27 tháng 1 2019 lúc 15:54

Ta có:  2n+1\(⋮\)n-2

\(\Rightarrow\)2n-4+5\(⋮\)n-2

\(\Rightarrow\)2(n-2)+5\(⋮\)n-2

Mà 2(n-2)\(⋮\)n-2                   (\(\forall\)n\(\in\)Z)

Nên 5\(⋮\)n-2

  n-2\(\in\)Ư(5)=\([\)-1;1;5;-5\(]\)(dấu ngoặc sai nhé)

n\(\in\)\([\)1;3;7;-3\(]\)

Bình luận (0)
DP
27 tháng 1 2019 lúc 19:16

\(2n+1⋮n-2\)

\(\Rightarrow2\left(n-2\right)+5⋮n-2\)

\(\Rightarrow5⋮n-2\)

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{3;1;7;-3\right\}\)

Vậy.............................

Bình luận (0)