Những câu hỏi liên quan
NN
Xem chi tiết
H24
6 tháng 11 2017 lúc 6:26

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
NL
2 tháng 12 2017 lúc 12:32

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

Bình luận (0)
DD
2 tháng 1 2022 lúc 17:04

Ta có : 83a + 38b chia hết cho 17

Suy ra : 17a +83a + 38b + 17b chia hết cho 17

Suy ra 100a +55b chia hết cho 17

Suy ra 5×(20a +11b ) chia hết cho 17

Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17) 

Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17

Bình luận (0)
HB
Xem chi tiết
LA
14 tháng 8 2016 lúc 18:19

Xét hiệu : 10 x (3a + 2b) - 3 x (10a + b) = 30a +20b - 30a - 3b = 17b chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10 x (3a + 2b) chia hết cho 17  => 3 x (10a + b) cũng chia hết cho 17 

Mặt khác: 3 không chia hết cho 17 => 10a + b chia hết cho 17

Vậy khi 3a + 2b chia hết cho 17 (a , b thuộc N) thì 10a + b chia hết cho 17.

(Bạn cũng có thể xét hiệu 3a + 2b - 2(10a + b) = -17a cũng chia hết cho 17 rồi lập luận tương tự như cách mình trình bày ở trên)

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:25

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
S6
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NM
17 tháng 10 2021 lúc 11:16

\(3a+2b⋮17\\ \Rightarrow\left\{{}\begin{matrix}3a⋮17\\2b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮17\\b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}10a⋮17\\b⋮17\end{matrix}\right.\\ \Rightarrow10a+b⋮17\)

Bình luận (0)
HN
Xem chi tiết
PT
17 tháng 10 2021 lúc 11:19

Ta có: 2 ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b

                                                   = 17a

Vì 17 ⋮ 17 => 17a ⋮ 17

                =>  2 ( 10a + b ) - ( 3a + 2b ) ⋮ 17

Vì 3a + 2b ⋮ 17 => 2 ( 10a + b ) ⋮ 17 

Mà ( 2,17 ) = 1 => 10a + b ⋮ 17

Vậy nếu 3a + 2b ⋮ 17 thì 10a + b ⋮ 17

HT

Bình luận (0)
 Khách vãng lai đã xóa
PT
17 tháng 10 2021 lúc 11:19

Tk tui

Bình luận (0)
 Khách vãng lai đã xóa
LV
17 tháng 10 2021 lúc 11:30

Theo bài ra, ta có:

\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))

\(\Rightarrow\)\(10a+2b⋮17\)

\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)

Mà \(\left(2;7\right)=1\)

\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
GG
11 tháng 11 2019 lúc 17:49

Ta có :

2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b

                                       = 17a

Vì 17a chia hết cho 17 

=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

Vì ( 3a + 2b ) chia hết cho 17 

=> 2 . ( 10a + b ) chia hết cho 17

Mà ( 2 ; 17 ) = 1

=> ( 10a + b ) chia hết cho 17

Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17

Bình luận (0)
 Khách vãng lai đã xóa
LV
15 tháng 10 2021 lúc 9:45

Theo đề bài ra, ta có:

\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))

\(\Rightarrow\)\(10a+2b⋮17\)

\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)

Mà \(\left(2;7\right)=1\)

\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TL
Xem chi tiết
H24
17 tháng 9 2018 lúc 22:17

dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá

25.(3a+2b)+10a+b=85a+51b chia hết cho 17

vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17

Bình luận (0)