A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}\).So sánh A với 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}\) và \(B=1\)
So sánh
a)
\(A=\frac{2011^{2012}+4}{2011^{2012}-1}\)với \(B=\frac{2011^{2012}+1}{2011^{2012}-4}\)
b)
\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)với \(\frac{1}{2}\)
So sánh S =\(\frac{2}{1×2×3}+\frac{2}{2×3×4}+\frac{2}{3×4×5}+...+\frac{2}{2010×2011×2012}\) với P=\(\frac{1}{2}\)
S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2010.2011.2012}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
=\(\frac{1}{2}-\frac{1}{2011.2012}< \frac{1}{2}\)(Vì \(\frac{1}{2011.2012}>0\))
=> S <\(\frac{1}{2}\)
\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{2010.2011.2012}\)
\(S=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2012-2010}{2010.2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2011.2012}=\frac{2023065}{4046132}\)
\(\text{Vì}\)\(\frac{2023065}{4046132}< \frac{1}{2}\Rightarrow S< P\)
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}
So Sánh : \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\) với \(1-\frac{1}{2^{2010}}\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(A=1-\frac{1}{2^{2011}}\)
Vì \(1-\frac{1}{2^{2011}}< 1-\frac{1}{2^{2010}}\)nên A < \(1-\frac{1}{2^{2010}}\)
Ủng hộ mk nha !!! ^_^
cho mk một tk đi bà con ơi
ủng hộ mk đi làm ơn
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\)
a)so sánh A với 1
b)so sánh A với \(\frac{3}{2}\)
So sánh A và B
\(A=-\frac{1}{2011}-\frac{3}{11^2}-\frac{5}{11^3}-\frac{7}{11^4}\)
\(B=-\frac{1}{2011}-\frac{7}{11^2}-\frac{5}{11^3}-\frac{3}{11^4}\)
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\text{ }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
So sánh
A=\(\frac{2006}{2007}-\frac{2007}{2008}+\frac{2008}{2009}-\frac{2009}{2010}\)
B=\(-\frac{1}{2006.2007}-\frac{1}{2008.2009}\)
So sánh
B=\(-\frac{1}{2011}-\frac{7}{11^2}-\frac{5}{11^3}-\frac{3}{11^4}\)
A=\(-\frac{1}{2011}-\frac{3}{11^2}-\frac{5}{11^4}\)
cho S = \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+.....+\frac{2010}{2^{2009}}+\frac{2011}{2^{2010}}\)
SO SÁNH S VỚI 3
lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?