Những câu hỏi liên quan
RC
Xem chi tiết
VL
25 tháng 11 2015 lúc 23:04

CMR: B= 3+3^3+3^5+...+3^1991 chia hết cho 13 và 41

Bình luận (0)
NT
Xem chi tiết
LH
16 tháng 7 2015 lúc 15:54

De thay B co 996 so hang

Ta co: 3+3^3+3^5+...+3^1991

= (3+3^3+3^5)+...+(3^1987+1989+1991)

=3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4)

=3.91+...+3^1987.91

=(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13

 

3+3^3+3^5+...+3^1991

=(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991)

=3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6)

=3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41

Bình luận (0)
PH
9 tháng 4 2017 lúc 9:20

chưng tỏ B:13

B=3+33+35+...+31991:13

B=3. (1+9+81)+37.(1+9+81)+...+31989.(1+9+81):13

B=91.(3+37+313+...+31989):13

vì 91:13=>B:13

vậy B:13

chưng tỏ B:41

B=3+33+35+...+31991:41

B=3.(1+9+81+729)+39.(1+9+81+729)+...+31988.(1+9+81+729):41

B=820.(3+39+317+...+31988):41

vì 820:41=>B:41

vậy B:41

Bình luận (0)
AT
28 tháng 2 2018 lúc 7:53

B=3+33+35+...+31991:13

B=3. (1+9+81)+37.(1+9+81)+...+31989.(1+9+81):13

B=91.(3+37+313+...+31989):13

vì 91:13=>B:13

vậy B:13

chưng tỏ B:41

B=3+33+35+...+31991:41

B=3.(1+9+81+729)+39.(1+9+81+729)+...+31988.(1+9+81+729):41

B=820.(3+39+317+...+31988):41

vì 820:41=>B:41

vậy B:41

Bình luận (0)
NK
Xem chi tiết
NC
Xem chi tiết
FF
18 tháng 8 2016 lúc 19:42

 Ta đặt biểu thức trên là S 
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P 
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41 

P có 996 số hạng 

Nhóm P thành từng bộ 3 số hạng 
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990 
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4) 
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986) 
= 91 x (1 + 3^6 + .... + 3^1986) 
Do 91 chia hết cho 13 nên P cũng chia hết cho 13 

Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có: 
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984) 
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984) 
Do 820 chia hết cho 41 nên P cũng chia hết cho 41 

Bình luận (0)
H24
29 tháng 9 2017 lúc 21:09

Ta có:

B= 3 + 3+ 3+ … + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + … + (31987 + 31989 + 31991).

= 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + … + 31987 x (1 + 3+ 34).

= 3 x 91 + 37 x 91 + … + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + … + 31987 x 7 x 13.

= 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7) nên B chia hết cho 13.

B= (3 + 3+ 3+ 37) +  … + (31985 + 31987 + 31989 + 31991).

= 3 x (1 + 3+ 3 + 36) +  … + 31985 x (1 + 3+ 3​+ 36).

= 3 x 820 + … + 31985 x 820= 3 x 20 x 41 + … + 31985 x 20 x 41.

= 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41

Bình luận (0)
AT
28 tháng 2 2018 lúc 7:53

B= 3 + 3+ 3+ … + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + … + (31987 + 31989 + 31991).

= 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + … + 31987 x (1 + 3+ 34).

= 3 x 91 + 37 x 91 + … + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + … + 31987 x 7 x 13.

= 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7) nên B chia hết cho 13.

B= (3 + 3+ 3+ 37) +  … + (31985 + 31987 + 31989 + 31991).

= 3 x (1 + 3+ 3 + 36) +  … + 31985 x (1 + 3+ 3​+ 36).

= 3 x 820 + … + 31985 x 820= 3 x 20 x 41 + … + 31985 x 20 x 41.

= 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) 

nên B chia hết cho 41

Bình luận (0)
NM
Xem chi tiết
H24
28 tháng 11 2017 lúc 21:42

Ta có:

\(A=3+3^3+3^5+...+3^{1991}=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(A=3.\left(1+3^2+3^4\right)+3^7.\left(1+3^2+3^4\right)+...+3^{1987}.\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(A=3.91+3^7.91+...+3^{1987}.91=3.7.13+3^7.7.13\)

\(A=13.\left(3.7.13+3^7.7+...+3^{1987}.7\right)\)

Vì: \(A=15.\left(2+2^4+...+2^{58}\right)\)nên \(A⋮13\)

Tương tự:

\(A=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(A=3.\left(1+3^2+3^4\right)+3^7.\left(1+3^2+3^4\right)+...+3^{1987}.\left(1+3^2+3^4+3^6\right)\)

\(A=3.820+...+3^{1985}.820=3.20.41+...+3^{1985}.20.41\)

\(A=41.\left(3.20+...+3^{1985}.20\right)\)nên \(B⋮41\)

:)

Bình luận (0)
TV
28 tháng 11 2017 lúc 21:19

(3+3^3+3^5)+...+(3^1987+3^1989+3^1991)

=3x(1+3^2+3^4)+...+3^1987x(1+3^2+3^4)

=3x91+...+3^1987x91

=(3+...+3^1987)x91=(3+...+3^1987)x13x7\(⋮\)13

Vậy A\(⋮\)13

(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991)

=3x(1+3^2+3^4+3^6)+...+3^1985x(1+3^2+3^4+3^6)

=3x820+...+3^1985x820

=(3+...+3^1985)x820=(3+...+3^1985)x41x20\(⋮\)41

Vậy A\(⋮\)41

Bình luận (0)
TD
3 tháng 12 2017 lúc 9:28

A chia hết cho 41

Bình luận (0)
CT
Xem chi tiết
DA
Xem chi tiết
DN
16 tháng 10 2017 lúc 19:29

Hình như đè bài của bạn bị sai thì phải . Chứ còn bài này mk vừa được học buổi chiều hôm nay xong , đè bài phải là (mk giải luôn đấy)

   B = 3+3^2+3^3+...+3^1991

  B= 3. ( 1+3+9 ) + ... + 3^ 1989.( 1+3+9)

  B= 3.13 + ...+3^1989 . 13

Vậy Bchia hết cho 13 ( mk lấy 3 : 3 = 1 ; 3^2:3 = 3 ; 3^3:3=9 khi cộng 3 số lại sẽ = 13 dựa vào đó nên mk mới ra 1+3+9 )

câu chia hết cho41 phải laf40 sau đó bạn làm theo cách như trên là ra 

Bình luận (0)
Xem chi tiết
TH
Xem chi tiết