Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
MT
Xem chi tiết
QC
6 tháng 3 2020 lúc 14:39

a )

(x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...

Bình luận (0)
 Khách vãng lai đã xóa
HT
6 tháng 3 2020 lúc 14:49

1.tìm các số nguyên x và y sao cho:

(x-3).(2y+1)=7

Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên

                               =>x-3  ; 2y+1 C Ư(7)

ta có bảng:

x-317-1-7
2y+171-7-1
x4102-4
y30-4-1

Vậy..............................................................................

2.tìm các số nguyên x và y sao cho:

xy+3x-2y=11

x.(y+3)-2y=11

x.(y+3)-y=11

x.(y+3)-(y+3)=11

(x-1)(y+3)=11

Vì x;y là số nguyên => x-1;y+3 là số nguyên

                               => x-1;y+3 Thuộc Ư(11)

Ta có bảng:

x-1111-1-11
y+3111-11-1
x2120-10
y8-2-14-4

Vậy.......................................................................................

Bình luận (0)
 Khách vãng lai đã xóa
NT
6 tháng 3 2020 lúc 19:31

\(a,\left(x-3\right).\left(2y+1\right)=7\)

\(Do:x;y\inℤ=>\hept{\begin{cases}x-3\\2y+1\end{cases}\in}ℤ\)

\(=>x-3;2y+1\inƯ\left(7\right)\)

Nên ta có bảng sau :

x-3-1-717
2y+1-7-171
x2-4410
y-4-130

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
KM
Xem chi tiết
CN
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
KS
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
HH
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

Bình luận (0)
LL
Xem chi tiết
FJ
11 tháng 2 2016 lúc 8:16

tui âm 89 nè

Bình luận (0)
TN
11 tháng 2 2016 lúc 8:22

\(\Leftrightarrow xy+3x^2=3\)

\(\Rightarrow xy+3x^3-3=0\)

=>x=0

Thay x=0 vào biểu thức 3x3+xy=3, ta có :

\(\Rightarrow3.0^3+0.y=3\)

=>y \(\in\left\{\infty;-\infty\right\}\)

vậy x,y có thể \(\in\left\{\infty;-\infty;0\right\}\)

Bình luận (0)
NK
Xem chi tiết
OP
25 tháng 7 2018 lúc 21:50

I don't now

mik ko biết 

sorry 

......................

Bình luận (0)
HT
25 tháng 7 2018 lúc 21:59

1)\(4n+3⋮n-2\)

\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)

\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)

\(\Rightarrow11⋮n-2\)

\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)

\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)

2)\(xy+5x+y+10=0\)

\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)

\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)

\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)

  x+1     -1      -5   

   1   

   5   
  y+5   5      1

  -5   

  -1
  x  -2  -6   0

   4

  y

  0  -4 -10 -6

3)

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
TP
11 tháng 2 2021 lúc 16:35

(x+1)(xy-1)=3

=> x+1 ; xy-1 thuộc Ư(3)={-1,-3,1,3}

Ta có bảng :

x+1-1-313
x-2-402
xy-1-3-131
y10ko thõa mãn1

Vậy ta có các cặp x,y thõa mãn là : (-2,1);(-4,0);(2,1)

Bình luận (0)
 Khách vãng lai đã xóa

a,(x+1)(xy-1)=3

có 3=1.3=3.1=-1.-3=-3.-1

x+1 1 3 -3 -1

x 0 2 -4 -2

xy-1 3 1 -1 -3

y Φ 1 0 1

vậy x;y là (2;1),(-4;0),(-2;1)

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
LL
16 tháng 4 2017 lúc 16:51

x=3;y=4

Bình luận (0)
HQ
Xem chi tiết
VT
14 tháng 1 2023 lúc 20:53

`xy - x + y = 6`.

`<=> x(y-1) + (y-1) = 5`.

`<=> (x+1)(y-1) = 5`.

`<=> x + 1 in Ư(5)`.

`+, {(x+1=1), (y-1 =5):}`

`<=> {(x=0), (y=6):}`

`+, {(x+1=-1), (y-1=-5):}`

`<=> {(x=-2), (y=-4):}`

`+, {(x+1=-5), (y-1=-1):}`

`<=> {(x=-6), (y=0):}`

`+, {(x+1=5), (y-1=1):}`

`<=> {(x=4), (y=2):}`

Bình luận (2)
LN
Xem chi tiết