Chứng minh: \(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}< 1\left(n\in N,n\ge2\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng :
A= \(\left(1-\frac{3}{2.4}\right).\left(1-\frac{3}{3.5}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)>\frac{1}{4}\)
\(n\in N;n\ge2\)
Ta có :
\(1-\frac{3}{n\left(n+2\right)}=\frac{n^2+2n-3}{n\left(n+2\right)}=\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow A=\frac{1.5}{2.4}.\frac{2.6}{3.5}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n-1}{n}\right)\left(\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{n+3}{n+2}\right)\)
\(=\frac{1}{n}.\frac{n+3}{4}=\frac{n+3}{n}.\frac{1}{4}\ge\frac{1}{4}\left(dpcm\right)\)
Chứng minh bất đẳng thức
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)>\frac{1}{2}\) \(\left(n\varepsilonℕ^∗,n\ge2\right)\)
\(\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\right)\left(\frac{n^2-1}{n^2}\right)\)
=\(\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(n-2\right)n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{\left(n-2\right).n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}=\frac{1}{2}.\frac{n+1}{n}=\frac{1}{2}+\frac{1}{2n}>\frac{1}{2}\)
Chứng minh đẳng thức sau \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\) với \(n\ge2\)
Với \(k\in N;k>0\) Ta có :
\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{\left(k+2\right)-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)
Áp dụng ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{n\left(n+1\right)-2}{2n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)(đpcm)
Ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{2\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{2n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2n\left(n+1\right)}-\frac{2}{2n\left(n+1\right)}=\frac{n^2+n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n^2+n-2}{2n^2+2n}=\frac{n^2+n-2}{2n^2+2n}\) với \(n\ge2\)
Vậy ...
Chứng minh rằng :
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+...+\frac{36}{25.27.29}<3\)
C= \(\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}<\frac{1}{4}\left(n\in N;n\ge2\right)\)
Giúp mik nhé
\(\begin{equation} x = a_0 + \cfrac{1}{740_1 + \cfrac{1}{897654_2 + \cfrac{1}{672_3 + \cfrac{1}{100_4} } } } \end{equation}\)
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...........+\frac{1}{\left(2n\right)^2}< 4\left(v\text{ới}n\in N;n\ge2\right)\)
Đề là chứng minh N < 1/4 sẽ đúng hơn
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
Ta lại có :
\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)
\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1
=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
=> \(N< \frac{1}{4}\)( đpcm )
Thank you very much
\(CMR:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{n}\left(n\in N;n\ge2\right)\)
\(\left(\frac{2}{2.3}-1\right)\left(\frac{2}{3.4}-1\right)\left(\frac{2}{4.5}\right)........\left(\frac{2}{n\left(n+1\right)}-1\right)\left(n\in N\ne0,n\ge2\right)\)
Cho $A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\left(n\in Z;n\ge2\right)$A=142 +162 +182 +...+1(2n)2 (n∈Z;n≥2)
Chứng tỏ A$\notin$∉ N
1. với \(n\in N,n\ge2\). chứng minh \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
2.chứng minh \(17< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{100}}< 18\)