Những câu hỏi liên quan
NT
Xem chi tiết
IA
Xem chi tiết
DH
Xem chi tiết
AH
20 tháng 2 2019 lúc 23:27

Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)

\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)

\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)

\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)

\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)

\(=(n+1)!-1\)

Bình luận (0)
HN
Xem chi tiết
VL
20 tháng 9 2019 lúc 19:49

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

Bình luận (0)
TT
Xem chi tiết
QS
Xem chi tiết
HM
Xem chi tiết
VT
Xem chi tiết
KM
Xem chi tiết