Những câu hỏi liên quan
NT
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
TX
1 tháng 11 2017 lúc 8:56

ta nhân vế đầu cho 2 ta được:

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)

dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)

Bình luận (0)
MT
Xem chi tiết
H24
Xem chi tiết
MP
Xem chi tiết
OC
Xem chi tiết
HD
Xem chi tiết
H24
1 tháng 9 2017 lúc 8:54

\(x^2+y^2+z^2=xy+yz+xz=1< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0< =>x=y=z=1....\\ .\)

Bình luận (0)
BM
Xem chi tiết
AN
15 tháng 11 2018 lúc 8:41

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Bình luận (0)
AN
15 tháng 11 2018 lúc 8:44

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

Bình luận (0)