Những câu hỏi liên quan
AM
Xem chi tiết
ZZ
Xem chi tiết
YS
Xem chi tiết
DT
16 tháng 2 2019 lúc 13:16

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.

Bình luận (0)
NT
Xem chi tiết
JJ
19 tháng 6 2015 lúc 12:52

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

Bình luận (0)
HH
3 tháng 12 2015 lúc 16:44

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

Bình luận (0)
HN
Xem chi tiết
NV
Xem chi tiết
H24
8 tháng 1 2017 lúc 14:51

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

Bình luận (0)
KG
Xem chi tiết
NM
3 tháng 8 2023 lúc 8:32

\(=n^2\left(n^4-n^2+2n+2\right)=\)

\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)

\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương

\(\Rightarrow n^2-2n+2\) Phải là số chính phương

Ta có

\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)

Ta có

\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1

\(\Rightarrow n^2-2n+2< n^2\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)

Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương

=> Biểu thức đề bài đã cho không phải là số chính phương

 

 

Bình luận (0)
PT
Xem chi tiết
SN
Xem chi tiết
TL
17 tháng 6 2015 lúc 9:28

A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)

=  n2(n + 1).(n3 - n2 + 2) =  n2(n + 1).(n3 + 1 + 1 - n2) =  n2(n + 1).(n +1). (n2 - n + 1 - n + 1) =  n2( n + 1)2.(n2 - 2n + 2)

Với n > 1 => n2 - 2n +  1 < n2 - 2n + 2 < n2 

               => (n - 1)2 < n2 - 2n + 2 < n2  

(n - 1)2 ;  n2 là 2 số chính phương liên tiếp  => n2 - 2n + 2 không thể là số chính phương

=> A không là số chính phương

Bình luận (0)
NT
25 tháng 5 2020 lúc 15:35

mình ko biết

Bình luận (0)
 Khách vãng lai đã xóa
NH
18 tháng 11 2021 lúc 16:32

`n6 - n4 + 2n3 + 2n2`
`= n2 . (n4 - n2 + 2n +2)`
`= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]`
`= n2 . [(n + 1)(n3 - n2 + 2)]`
`= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]`
`= n2. (n + 1)2 . (n2 - 2n + 2)`
Với `n ∈ N, n > 1` thì` n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2`
Và `n2 - 2n + 2 = n2 - 2(n - 1) < n2`
Vậy `(n - 1)2 < n2 - 2n + 2 < n2`
`=> n2 - 2n + 2` không phải là một số chính phương.

Bình luận (0)