giải pt sau
\(\frac{150}{x-1}\frac{140}{x}=5\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{150}{x-1}-\frac{140}{x-1}=5\)
Giải phường trình sau
\(\frac{150}{x-1}-\frac{140}{x-1}=5\left(ĐK:x\ne1\right)\)
\(\Leftrightarrow\frac{10}{x-1}=5\)
\(\Leftrightarrow x-1=2\)
\(\Leftrightarrow x=3\)
ĐKXĐ: x-1\(\ne\)0=> x\(\ne\)1
=> \(\frac{150-140}{x-1}\)=5
=> \(\frac{10}{x-1}\)=5
=> 10= 5(x-1)=> x-1=2=> x=1(ko thỏa mã ĐKXĐ x\(\ne\)1)
phương trình này vô nghiệm.
\(\frac{150}{x-1}-\frac{140}{x-1}\)= 5
\(\frac{150-140}{x-1}=5\)
\(\frac{10}{x-1}=5\)
\(\frac{10}{x-1}=\frac{5x-5}{x-1}\)
10 = 5x - 5
-5x = -10 - 5
-5x = -15
x = -15 : -5
x = 3
Giải các pt sau
a. | x - 1 | = 2x
b. \(\frac{x}{x^2-25}=\frac{1}{x+5}+\frac{1-x}{x-5}\)
a/ Chia làm 2 trường hợp :
+) x - 1 = 2x => -x = 1 => x = -1
+) x - 1 = -2x => 3x = 1 => x = 1/3
Vậy x = -1 ; x = 1/3
b/ \(\Rightarrow x=x-5+\left(x+5\right)\left(1-x\right)\)
\(\Rightarrow x=x-5+x-x^2+5-5x\)
\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow x=0\) hoặc \(x+4=0\Rightarrow x=-4\)
Vậy x = 0 ; x = -4
Giải các pt chứa ẩn ở mẫu sau:
a, \(\frac{12}{8+x^3}=1+\frac{1}{x+2}\)
b,\(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)
c,\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
GIẢI PT:
\(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)x+\frac{1}{4.5^{99}.x}=\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}\)
Đặt \(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
=> \(\frac{1}{5}.A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}+\frac{1}{5^{100}}\)
=> \(A-\frac{1}{5}A=\frac{4}{5}.A=1-\frac{1}{5^{100}}\Rightarrow\frac{4}{5}.A=\frac{5^{100}-1}{5^{100}}\Rightarrow A=\frac{5^{100}-1}{4.5^{99}}\)
Tính \(\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}=\frac{1}{25}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{380}\right)\)
\(=\frac{1}{25}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)=\frac{1}{25}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)\(=\frac{1}{25}.\left(1-\frac{1}{20}\right)=\frac{19}{20.25}=\frac{19}{4.5^3}\)
vậy phương trình đã cho trở thành:
\(\frac{5^{100}-1}{4.5^{99}}.x+\frac{1}{4.5^{99}.x}=\frac{19}{4.5^3}\Rightarrow\left(5^{100}-1\right)x^2+1=19.5^{96}.x\)
\(\left(5^{100}-1\right)x^2-19.5^{96}.x+1=0\)
bạn kiểm tra lại đề lần nữa, phương trình này có nghiệm rất lẻ , nghiệm lớn
giải pt: \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)+\sqrt{x-\frac{1}{x}}=\left(2x-\frac{5}{x}\right)+\sqrt{2x-\frac{5}{x}}\)
\(a=\sqrt{x-\frac{1}{x}};\text{ }b=\sqrt{2x-\frac{5}{2}};\text{ }a,\text{ }b>0\)
\(a^2+a=b^2+b\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\text{ }\left(do\text{ }a+b+1\ge1>0\right)\)
\(\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\Leftrightarrow x-\frac{4}{x}=0\Leftrightarrow x^2-4=0\Leftrightarrow x=\pm2\)
Giải pt: \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
Cộng cả tử và mẫu với 1=> Kết quả là -66
Giải PT
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
Cần gì phải thế.
Đặt \(\sqrt{x-\frac{1}{x}}=a\ge0;\sqrt{2x-\frac{5}{x}}=b\ge0\Rightarrow x-\frac{4}{x}=b^2-a^2\)
\(\Rightarrow a=b^2-a^2+b\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
Đến đây tự làm tiếp
Giải các pt sau:
a,\(\frac{x+5}{x^2-5}\)-\(\frac{x+25}{2x^2-50}\)\(=\frac{x-5}{2x^2+10x}\)
b,\(\frac{x+1}{x-1}-\)\(\frac{x-1}{x+1}\)\(=\frac{16}{x^2-1}\)
c,\(\left(1-\frac{x-1}{x+1}\right)\left(x+2\right)\)\(=\frac{x+1}{x-1}+\frac{x-1}{x+1}\)
a)\(pt\Leftrightarrow-\frac{x}{2x^2-5}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=\frac{x}{2x^2+10x}-\frac{5}{2x^2+10x}\)
=>\(-\frac{x}{2x^2+10x}+\frac{5}{2x^2+10x}-\frac{x}{2x^2-50}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=0\)
\(\Leftrightarrow-\frac{5\left(x^2+8x-5\right)}{2\left(x-5\right)x\left(x^2-5\right)}=0\)
\(\Rightarrow\frac{1}{x-5}=0\Leftrightarrow\frac{1}{x}=0\Rightarrow\frac{1}{x^2-5}=0\)
=>x2+8x-5=0
=>82-(-4(1.5))=84
=>x1=(-8)+8:2=\(\sqrt{21}-4\)
=>x2=(-8)+8:2=\(-\sqrt{21}-4\)
=>x=±\(\sqrt{21}-4\)
b)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=\frac{16}{x^2-1}\)
\(\Rightarrow-\frac{16}{x^2-1}-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=0\)
\(\Rightarrow\frac{4\left(x-4\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=4
c)\(\Leftrightarrow-\frac{x^2}{x+1}-\frac{x}{x+1}+\frac{2}{x+1}+x+2=\frac{x}{x+1}-\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}\)
\(\Rightarrow-\frac{x^2}{x+1}-\frac{2x}{x+1}+\frac{3}{x+1}-\frac{x}{x-1}+x-\frac{1}{x-1}+2=0\)
\(\Rightarrow\frac{2\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=3
Giải pt : \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)
ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3
\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)
3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3
3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0
13x - 1 = 0
x = \(\frac{1}{13}\)