1. Tìm x thuộc Z biết:n^2+1 là bội của n+2
2. CMR 9a +5b chia hết cho 17
Cho a,b thuộc Z. CMR:
(2a + 3b) chia hết cho 17 khi và chỉ khi (9a+5b) chia hết cho 17.
1. cmr : nếu a,b thuộc Z thì : 2a + 3b chia hết cho 17 khi và chỉ khi : 9a+5b chia hết cho 17
2. cho tam giác ABC vuông tại A có cạnh góc vuông AB= 1/2 cạnh huyền . tính góc C
1,Ta có:4(2a+3b)+(9a+5b)
=8a+12b+9a+5b
=17a+17b chia hết cho 17
Vì (2a+3b) chia hết cho 17
=>4(2a+3b) chia hết cho 17
=>9a+5b chia hết cho 17
=>đpcm
Bài 1 Tìm n thuộc Z
n^2- 2x + 3 chia hết cho x - 1
Bài 2 x ; y thuộc Z .CMR
6x + 11y là bội của 11
khi và chỉ khi x + 7y là bội của 11
cho a;b thuộc N
a) biết 2a+3b chia hết cho 17. chứng minh 9a+5b chia hết cho 17
b) biết 9a+5b chia hết cho 17. chứng minh 2a+3b chia hết cho 17
Bài 244 :Tìm x thuộc z để :
a. 4n-5 chia hết cho n
b.-11 là bội của n-1
c. 2n-1 là ước của 3n+2
Bài 245 :Tìm n thuộc z để :
a.n^2-7 là bội của n+3
b.n+3 là bội của n^2-7
Bài 246 : Tìm x thuộc z sao cho :
n-1 là bội của n+5 và n+5 là bội của n-1
Giúp mình với!
Câu 1: CMR với mọi a,b thuộc Z :
a, \(a^3b-ab^3\) chia hết cho 6 b,\(a^5b-ab^5\) chia hết cho 30
Câu 2: CMR tồn tại 1 bội của 203 có dạng: 200420042004....20042004
Câu 3: Tìm n thuộc N sao cho \(x^{2n}+x^n+1\) chia hết cho \(x^2+x+1\)
Câu 4: CMR với mọi n thuộc N \(\left(x^n-1\right)\left(x^{n+1}-1\right)\) chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
Giúp mình với khó quá! Ai làm hộ mình mình like tất! Làm mấy câu cũng đc! khoảng 2h 50 mình lấy nha mấy bạn thân ui!
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
sssssssssssss
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
BÀI 1: Cho a và b thuộc N( a.b khác 0)
X=(ab-1)^2 + (a+b)^2. CMR: X là hợp số
BÀI 2: Cho a và b thuộc Z:
X= a^5b - ab^5.CMR: X chia hết cho 30
BÀi 1: (ab-1)^2+(a+b)^2
=a^2b^2 -2ab+1+a^2+2ab+b^2
=a^2b^2 +a^2 +b^2+1
= a^2(b^2+1) +(b^2+1)
=(a^2 +1)(b^2 +1) MÀ a,b thuộc N* , a^2+1>= 0 với mọi a, b^2+1>= 0 với mọi b
Vậy x là hợp số