Chứng tỏ rằng mọi số tự nhiên M=(2a)(2b)(2c)abc chia het cho 3 ; 23 ; 29
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng mọi số tự nhiên M = (2a)(2b)(2c)abc đều chia hết cho 3 , cho 23 và cho 29
2a = 24; 2b = 25 ; 2c = 26
4+5+6=15 chia hết cho 3.
M = (2a)(2b)(2c)abc = 2a . 100 000 + 2b . 10 000 + 2c . 1000 + abc
= 2000(100a + 10b + c) + abc = 2000 . abc + abc = 2001 . abc
= 3 . 23 . 29 . abc
Suy ra M \(⋮\)3 , M \(⋮\) 23 và M \(⋮\)29.
Chứng tỏ : Số tự nhiên (2a)(2b)(2c)abc chia hết cho 3;23 và 29
1. Chứng tỏ rằng tích n(n+3) là số chẵn với mọi số tự nhiên n .
2. Chứng tỏ rằng số a = 911+1 chia het cho ca 2 va 5 .
1. + Nếu n chẵn => n(n + 3) chẵn
+ Nếu n lẻ => n + 3 chẵn => n(n + 3) chẵn
Chứng tỏ tích n(n + 3) luôn chẵn với mọi số tự nhiên n
2. a = 911 + 1
a = 910 . 9 + 1
a = (92)5 . 9 + 1
a = (...1)5 . 9 + 1
a = (...1) . 9 + 1
a = (...9) + 1
a = (...0) chia hết cho 2 và 5
Chứng tỏ số a = 911 + 1 chia hết cho cả 2 và 5
1) n(n+3)=n.n+n.3
nếu n là số lẻ thì n.n=số lẻ và n.3 = số lẻ;số lẻ + số lẻ = số chẵn
nếu n là số chẵn thì n.n=số chẵn và n.3 =số chẵn;số chẵn + số chẵn
9 mũ 1 = 9
9 mũ 2 = 81
9 mũ 3 =729
9 mũ 4 = ...1
9 mũ 5 = ...9
=>9 mũ 11 =...9
...9+1=...0
những số có chữ số tận cùng là 0 sẽ chia hết cho cả 2 và 5
cho (2a+7b) chia het cho 3 (a,b thuộc N)
chứng tỏ rằng (4a + 2b) chia het cho 3
giup mk nha....
Ta có : 2a + 7b chia hết cho 3
=> 4a + 14b chia hết cho 3
Ta có : 4a + 14b - (4a + 2b) chia hết cho 3
= 12b chia hết cho 3
=> 4a + 2b chia hết cho 3 (đpcm)
Ta có 2a+7b chia hết cho 3
=> 4a+14b chia hết cho 3
ta có 4a+14b-(4a+2b) chia hết cho 3
=> 12b chia hết cho 3
=> 4a +2b chia hết cho 3 (đpcm )
( 2a + 7b ) \(⋮\)3
=> 4a + 14b \(⋮\)3
Ta có : 4a + 14b - ( 4a + 2b ) \(⋮\)3
=> 12b \(⋮\)3
=> 4a + 2b \(⋮\)3
CMR voi moi so M=(2a)(2b)(2c)abc chia het cho 3,23.29
Cho a,b là các số tự nhiên khác 0, biết (4a+b)chia hết cho 3. chứng tỏ (2a+2b) chia hết cho 3
1,cho(2a+7b )chia hết cho 3(với ạ ,b thuộc số tự nhiên)chứng minh rằng (4a+2b)chia hết cho 12
2 cho,b thuộc số tự nhiên và( 11a+2b)chia hết cho 12 chứng minh rằng(a+34b) chia hết cho 12
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
cho các số tự nhiên a,b biết 2a+b chia hết cho 7 . chứng tỏ rằng
a,a+4b chia hết cho 7
b,3a - 2b chia hết cho 7
Mn giúp em nhanh với ạ
a, Ta có:\(2a+b+5\left(a+4b\right)=2a+b+5a+20b=7a+21b=7\left(a+3b\right)⋮7\)
Mà \(2a+b⋮7\Rightarrow a+4b⋮7\)
b, Ta có:\(2\left(2a+b\right)+3a-2b=4a+2b+3a-2b=7a⋮7\)
Mà \(2a+b⋮7\Rightarrow3a-2b⋮7\)
Bài 1 : Chứng minh a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta có :
a, ( n + 10 ) ( n + 15 ) chia hết cho 2
b, n^3 + 5n chia hết cho 6
c, ( 3^100 + 19^990 ) chia hết cho 2
d, ( 3^1993 - 2^157 ) không chia hết cho 2
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
bài 2
a, ta có 2 TH:
+)n là số chẵn =>n+10 chia hết cho 2
+)n là số lẻ =>n+15 chia hết cho 2