Một số A được chia thành 3 phần tỉ lệ nghịch với 5;2;4 . Biết tổng các lập phương của ba phần đó là 9512.Tim số A
a, Chia số 315 thành ba phần tỉ lệ nghịch với 3;5;6
b, Chia số 786 thành ba phần tỉ lệ nghịch với 0,2;10/3;4/5
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
Chia số 1240 thành 3 phần :
a ) Tỉ lệ thuận với 2 ; 3 ; 5
b ) Tỉ lệ nghịch với 2 ; 3 ;5
Giúp mình với!
a) Tỉ lệ thuận
Phần 1: 248
Phần 2 : \(\dfrac{1240}{3}\)
Phần 3: 620
b) tỉ lệ nghịch thì ngược lại...
HÃy chia số 470 thành ba phần tỉ lệ nghịch với 3, 4 , 5
Hãy chia 555 với 3 tỉ lệ nghịch 4 5 6
Hãy chia 314 thành ba tỉ lệ thuận 2/3 3/5 3/7
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
6) Một xô A được chia thành ba phần tỉ lệ nghịch vơi 3; 5; 6. Biêt tổng của ba phần đo là 21. Hãy tìm ba phần tỉ lệ nghịch ây?
chuc cau may man tu giai nha ko phai ai giup do nha
Gọi 3 phần lần lượt là x, y, z (x, y, z >0)
Theo bài ra ba phần tỉ lệ nghich với 3, 5, 6
=> 3.x=5.y=6.z
=> \(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{10+6+5}=\frac{21}{21}=1\)
=> x=10, y=6, z=5
minh thich roi do cau gui anh jungkook qua cho minh nha
Số A được chia thành 3 phần, tỉ lệ nghịch với 5, 2, 4. Biết tổng các lập phương của 3 phần đó là 9512. Tìm A
gọi 3 phần là a,b,c (a,b,c \(\in Q\)và a+b+c =A
ta có : 5a=2b=4c \(\Rightarrow\frac{a}{4}=\frac{b}{10}=\frac{c}{5}=\frac{a+b+c}{4+10+5}=\frac{a+b+c}{29}=k\left(k\ne0\right)\)(ad tc của dãy tỉ số = nhau )
\(\Rightarrow\left(\frac{a}{4}\right)^3=\left(\frac{b}{10}\right)^3=\left(\frac{z}{5}\right)^3=\frac{a^3+b^3+c^3}{64+1000+125}=\frac{9512}{1189}=8\)=k.k.k
(ad tc của dãy tso = nhau)
\(\Rightarrow k\in\left\{2\right\}\)
nếu k=2 thì A=2.29=58
VẬY A=58
một số a được chia thành 3 phần tỉ lệ nghịch với 2/3,1/2,3/4 và tổng các lập phương của 3 phần là 11565. Tìm số a
gọi 3 phần của a lần lượt là b,c,d
Vì b,c,d tỉ lệ nghịch với 2/3,1/2,3/4 và b3 + c3 + d3 = 11565
\(\Rightarrow\frac{2}{3}b=\frac{1}{2}c=\frac{3}{4}d\)
hay \(\frac{2b}{3.6}=\frac{c}{2.6}=\frac{3d}{4.6}\)
\(\Rightarrow\frac{b}{9}=\frac{c}{12}=\frac{d}{8}\)
\(\Rightarrow\left(\frac{b}{9}\right)^3=\left(\frac{c}{12}\right)^3=\left(\frac{d}{8}\right)^3\)
\(\frac{b^3}{9^3}=\frac{c^3}{12^3}=\frac{d^3}{8^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{b^3}{9^3}=\frac{c^3}{12^3}=\frac{d^3}{8^3}=\frac{b^3+c^3+d^3}{9^3+12^3+8^3}=\frac{11565}{2969}\)
hình như đề có vấn đề
a) chia số 552 thành 3 phần tỉ lệ thuận với 3;4;5
b) chia số 315 thành 3 phần tỉ lệ nghịch với 3;4;6
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a, chia số 84 thành 3 phần tỉ lệ nghịch với 3,5,6
b, chia số 84 thành 3 phần tỉ lệ thuân với 3,5,6
Gọi 3 phần được chia từ 84 lần lượt là a;b;c
Theo đề bài, ta có: \(3a=5b=6c\Rightarrow\frac{a}{5}=\frac{b}{3};\frac{b}{6}=\frac{c}{5}\Rightarrow\frac{a}{30}=\frac{b}{18}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{30}=\frac{b}{18}=\frac{c}{15}=\frac{a+b+c}{30+18+15}=\frac{84}{63}=\frac{4}{3}\)
\(\Rightarrow a=30.\frac{4}{3}=40\)
\(b=18.\frac{4}{3}=24\)
\(c=15.\frac{4}{3}=20\)
Vậy 3 phần cần tìm đó là 40;24;20
Một số A được chia thành ba phần tỉ lệ nghịch với 5 ; 2 ; 4 . Biết tổng các lập phương của ba phần đó là 9512. Hãy tìm A
gọi ba phần là x,y,z
Ta có : x : y : z = \(\frac{1}{5}:\frac{1}{2}:\frac{1}{4}=4:10:5\)
hay \(\frac{x}{4}=\frac{y}{10}=\frac{z}{5}=k\)
\(\Rightarrow k^3=\frac{x^3}{64}=\frac{y^3}{1000}=\frac{z^3}{125}=\frac{x^3+y^3+z^3}{64+1000+125}=\frac{9512}{1189}=8\)
\(\Rightarrow k=2\)
Vậy : \(\frac{x+y+z}{4+10+5}=2\)suy ra \(x+y+z=2.19=38\)
\(\Rightarrow A=38\)
Gọi 3 phần đó đó là a,b,c
Vì a,b,c tỉ lệ nghịch với 5;2;4 nên a,b,c tỉ lệ thuận với 1/5,1/2,1/4 tức là
\(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}=\frac{c}{\frac{1}{4}}\Rightarrow5a=2b=4c\Rightarrow\frac{5a}{20}=\frac{2b}{20}=\frac{4c}{20}\Rightarrow\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
Đặt \(k=\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
\(\Rightarrow k^3=\frac{a^3}{64}=\frac{b^3}{1000}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{64+1000+125}=\frac{9512}{1189}=8\)
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=2\\\frac{b}{10}=2\\\frac{c}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}a=8\\b=20\\c=10\end{cases}}}\)
=> A = a + b + c = 8 + 20 + 10 = 38