Tìm số dư của phép chia 1 + 2 + 2 mũ 2 + 2 mũ 3 +... + 2 mũ 2019 cho 7
Cho tổng A= 2 mũ 0 + 2 mũ 1+ 2 mũ 2 + 2 mũ 3+ 2 mũ 4+ 2 mũ 5 + ..... + 2 mũ 100 Tìm số dư của phép chia tổng A cho 3
Tìm dư của phép chia 2 mũ 2017 cho 1+2+2 mũ 2+ 2 mũ 3+...+ 2 mũ 2013 + 2 mũ 2014
Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.
Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).
Trong trường hợp này, chúng ta có p = 2 và a = 2.
Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).
Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.
Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.
Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.
cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 +....+ 2 mũ 2018
a) so sánh A với 2 mũ 2019
b) tìm số tự nhiên x biết A+1 = 2 mũ x +1
c) tìm số tự nhiên x biết A+1 = 2.4 mũ x
d) chứng minh rằng A chia hết cho 7
e) tính số dư khi chia A cho 3 và khi chia A cho 15
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
c)theo câu b ta có A+1=2^2019=2.4^x=2^(1+2x)
=>2019=1+2x
tự làm nốt
Cho A bằng 2 mũ 0 +2 mũ 1 +2 mũ 2+2 mũ 3+2 mũ 4+.....+2 mũ 100
Tìm số dư của phép chia tổng A cho 3
Giups mik với T T
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1
học tốt nhé bạn
mik cũng vậy
mik giúp nhưng nhớ k cho mik nha
A=2 mũ 0 +2 mũ 1+2 mũ 2+ 2mũ 3 + 2 mũ 4+2 mũ 5 +...+ 2 mũ 100
Tìm số dư của phép chia tổng A cho 3
Cứu tui với
\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)
Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)
\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1
hay số dư của phép chia \(A\) cho \(3\) là \(1\).
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1
Bài 1: Tìm x, biết
X2020=x
Bài 2:
cho A=1+2+2 mũ 2 +..+2 mũ 2018+ 2 mũ 2019+2 mũ 2020. Tìm số dư chia A dư 7
giải giúp mình với!!
Bn nào giải nhanh, chính xác!
Mk tick cho
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
Tìm số dư trong phép chia A cho 15:
Biết A=1+2+2 mũ 2+2 mũ 3+.......+2 mũ 61
tìm số dư của:
A=1+2+2 mũ 2+2 mũ 3+...+2 mũ 2016 chia hết cho 7
Lời giải:
$A=1+3+3^2+3^3+....+3^{2026}$
$=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+....+(3^{2023}+3^{2024}+3^{2025}+3^{2026})$
$=13+3^2(3+3^2+3^3+3^4)+3^6(3+3^2+3^3+3^4)+...+3^{2022}(3+3^2+3^3+3^4)$
$=13+(3^2+3^6+...+3^{2022})(3+3^2+3^3+3^4)$
$=13+(3^2+3^6+...+3^{2022}).120$
$\Rightarrow A$ chia $120$ dư $13$