Chứng minh rằng: 1.1! +2.2! +3.3! +...+n.n! =(n+1)!, với n lớn hơn hoặc bằng 1
A=1/1.1!+1/2.2!+1/3.3!+...+1/n.n!+...+1/2013.2013! tổng A có 2013 số hạng . Chứng minh rằng A<3/2
A=1/1.1!+1/2.2!+1/3.3!+...+1/n.n!+...+1/2013.2013!
tổng A có 2013 số hạng . Chứng minh rằng A<3/2
tinh
A=1.1!+2.2!+3.3!+.........+n.n!
B=1.2.4+2.3.5+3.4.6+4.5.7+.....+n.(n+1).(n+3)
Tính tổng
a, S = 1.1! + 2.2! + 3.3! +....+ n.n! (n! = 1.2.3....n )
Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)
\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)
\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)
\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)
\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)
\(=(n+1)!-1\)
a)E=1+3+6+...+5050
b)F=6+16+30+...+2040
c)G=2+5+9+...+10300;d)n!=1.2.3. ... .n-Rút gọn A=1.1!+2.2!+3.3!+....+n.n
d) D=1.1! + 2.2! + 3.3! +...+ 6.6!
e) E= 1.1! + 2.2! + 3.3! +...+ n.n!
Mình nhờ các bạn giải cả bài ra giùm mình nhé!!!!
Tính: 1.1!+2.2!+3.3!+...+n.n!
1.1! +2.2! + 3.3! +... + n.n!
Chứng minh rằng với mọi n thuộc N* thì:
a) S(n) = 1.1! + 2.2! + 3.3! + ... + n.n! = (n+1)! -1
b) S(n) = 1.3 + 2.4 + 3.5 + ... + (n - 1) (n + 1) = \(\frac{\left(n-1\right).n.\left(2n+1\right)}{6}\)
c) S(n) = 12 + 22 + 32 + ... + n2 = \(\frac{n.\left(n+1\right)\left(2n+1\right)}{6}\)
Giải bằng phương pháp quy nạp toán học
Help plz chiều mai học rồi ạ QAQ