Tìm GTNN của
A=\(\frac{3x^2-8x+13}{x^2+5}\)
B=\(\frac{x^2-5}{x+3}\) với x lớn hơn hoặc bằng 0
Câu 1 : -4.(2x+9)-(-8x+3)-(x+13)=0
Câu 2: 7x.(2+x)-7x.(x+3)=14
Câu 3: 3.|x-2|+2x=19 với x lớn hơn hoặc bằng 2
Câu 4: 2.|3-x|-5x=-24 với x lớn hơn hoặc bằng 3
Câu 5: |x+11|+|13-x|=0
Giúp mình với nhé
Tìm GTNN của \(\frac{3x^2-8x+13}{x^2+5}\)
Tìm GTNN của \(\frac{3x^2-8x+13}{x^2+5}\)
\(\frac{3x^2-8x+13}{x^2+5}=\frac{x^2+5+2x^2-8x+8}{x^2+5}=1+\frac{2\left(x^2-4x+4\right)}{x^2+5}=1+\frac{2\left(x-2\right)^2}{x^2+5}\ge1\)
Dấu \(=\)xảy ra khi \(x-2=0\Leftrightarrow x=2\).
a) Tìm GTLN A= \(\frac{2x^2+9}{x^2+4}\)
b) Tìm GTNN B=\(\frac{3x^2-8x+13}{x^2+5}\)
Giúp mình càng sớm càng tốt nha :))
a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)
Ta thấy \(x^2\ge0\forall x\)
=> \(x^2+4\ge4\forall x\)
=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)
=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)
\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)
1. cho x, y, x >0 và x + y + z =< \(\frac{3}{2}\)
CMR : \(\sqrt{\left(X^2+\frac{1}{X^2}\right)}+\sqrt{Y^2+\frac{1}{Y^2}}+\sqrt{Z^2+\frac{1}{Z^2}}\)LỚN HƠN HOẶC BẰNG \(\frac{3}{2}\sqrt{17}\)
2. TÌM MAX : \(B=3-2x+\sqrt{\left(5-x^2+9x\right)}\)
3. Tìm min : \(M=\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}+3\sqrt{3x}\)
Cho A=|X+5|+2-X
a)Tính giá trị của A tại X=\(-\frac{3}{4}\)
b)Rút gọn A với X bé hơn hoặc bằng -5
c)Tìm GTNN của A
\(A=\left|x+5\right|+2-x\)
Thay \(x=-\frac{3}{4}\)vào \(\left|x+5\right|+2-x\)ta có:
\(\left|-\frac{3}{4}+5\right|+2-\frac{-3}{4}\)
\(=\left|-\frac{3}{4}+\frac{20}{4}\right|+2-\frac{-3}{4}\)
\(=\frac{17}{4}+2+\frac{3}{4}\)
\(=\left(\frac{17}{4}+\frac{3}{4}\right)+2\)
\(=5+2\)
\(=7\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.