tìm tất cả các số nguyên dương a,b,c thỏa mãn
\(\frac{4a}{5}+\frac{9b}{10}+c=10\) và \(11< a+b+c\)
Bài 2: Liệt kê và tính tổng của tất cả các số nguyên x thỏa mãn:
a) -4 < x < 5 b) -7 < x < 5 c) -19< x < 20
Bài 3: Tìm , biết:
a) 2x – 18 = -10 c) 34 – 5x = 9
b) 3x + 26 = 5 d) -4x + 9 = -7
Bài 4. Tìm số nguyên x , biết:
Bài 5. Tìm số nguyên x, biết:
B3 a) x=4 b) x=-7 c) x=5 d) x=4
B2 a) -3+ -2+ -1+0+1+2+3+4=4
b) -6+ -5+ -4+ -3+ -2+ -1+0+1+2+3+4=-11
c) -18+-17+-16+-15+-14+-13+-12+-11+-10+-9+-8+-7+-6+-5+-4+3+-2+-1+0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=19
a, Tìm tất cả các số nguyên x thỏa mãn -11<x<9. Tính tổng tất cả các số nguyên vừa tìm đc
b,Tìm tất cả các số nguyên x thỏa mãn -9<x<10.Tính tổng các số nguyên vừa tìm đc
c,Tìm tất cả các số nguyên x thỏa mãn -15<x<16.Tính tổng tất cả các số nguyên vừa tìm đc
Phần b và c là dấu lớn hơn hoặc bằng nhé !!
MN GIÚP MÌNH VỚI Ạ !!!!
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Tìm số nguyên dương a, b, c thỏa mãn a.b = c; b.c = 4a; a.c = 9b
Tìm tất cả các bộ ba số nguyên dương (a;b;c) thỏa mãn :
\(a\le b\le c\)và \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=2\)
Tính GTNN của \(P=\frac{1}{2+4a}+\frac{1}{3+9b}+\frac{1}{6+36c}\)
Trong đó a, b, c là ba số thực dương thỏa mãn a + b + c = 1
Cho các số dương a, b, c thỏa mãn a + b + c = 1. Tìm GTNN của:
T = \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)
Tìm các số nguyên dương a;b;c thỏa mãn :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Tìm tất cả các số nguyên tố a,b,c,d thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{abcd}\)
Không mất tính tổng quát ta giả sử
\(a\ge b\ge b\ge d\)
\(\Rightarrow\frac{1}{abcd}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{4}{a}\)
\(\Leftrightarrow\frac{1}{bcd}\ge4\)
\(\Leftrightarrow bcd\le\frac{1}{4}\)
Vậy phương trình vô nghiệm.
a, Tìm tất cả các giá trị nguyên của x để A=\(\frac{x^4+x^2+x+2}{x^4+3x^3+7x^2+3x+6}\) cũng là số nguyên.
b, Cho các số dương a,b,c thỏa mãn: a+b+c=4. Tìm GTNN của biểu thức
P=\(\frac{a\sqrt{a}}{\sqrt{a}+3\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{b}+3\sqrt{c}}+\frac{c\sqrt{c}}{\sqrt{c}+3\sqrt{a}}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)