Những câu hỏi liên quan
QH
Xem chi tiết
VC
5 tháng 1 2018 lúc 13:37

lấy pt(1) + pt(2), ta có 

\(3x+2z=16\)(4)

lấy  2.pt(2)+pt(3), ta có 

\(7x+3z=24\)(5)

từ (4), (5), ta có hpt sau 

\(\hept{\begin{cases}3x+2z=16\\7x+3z=24\end{cases}\Leftrightarrow}\hept{\begin{cases}9x+6z=48\\14x+6z=48\end{cases}}\)

từ 2 vế của 2 pt => x=0 và tính được z=8=>y=3

^_^

Bình luận (0)
TD
Xem chi tiết
NK
Xem chi tiết
BH
1 tháng 3 2020 lúc 20:42

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TM
16 tháng 1 2022 lúc 21:37

Bó tay. com

Bình luận (0)
 Khách vãng lai đã xóa
NT
17 tháng 1 2022 lúc 20:51
Ko biết sorry
Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 1 2022 lúc 21:47

ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
PK
Xem chi tiết
H24
14 tháng 11 2017 lúc 11:18
Chịu
Bình luận (0)
VA
11 tháng 1 2022 lúc 16:21

google xin tài trợ chương trình

Bình luận (0)
 Khách vãng lai đã xóa
NK
11 tháng 1 2022 lúc 20:03

có google thôi anh

Bình luận (0)
 Khách vãng lai đã xóa
SS
Xem chi tiết
ND
7 tháng 1 2022 lúc 13:31

Đây ok chưa

Ko cop

Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)

Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)

Thay về hệ phương trính ta được :

\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Hoàng Phong cop ở vietjjack

Bình luận (0)
 Khách vãng lai đã xóa

Tham khảo bài làm ạ:

TL:

Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)

HT

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NM
Xem chi tiết